Skip to main content
placeholder image

Morphological Feature Visualization of Alzheimer's Disease via Multidirectional Perception GAN

Journal Article


Abstract


  • The diagnosis of early stages of Alzheimer's disease (AD) is essential for timely treatment to slow further deterioration. Visualizing the morphological features for early stages of AD is of great clinical value. In this work, a novel multidirectional perception generative adversarial network (MP-GAN) is proposed to visualize the morphological features indicating the severity of AD for patients of different stages. Specifically, by introducing a novel multidirectional mapping mechanism into the model, the proposed MP-GAN can capture the salient global features efficiently. Thus, using the class discriminative map from the generator, the proposed model can clearly delineate the subtle lesions via MR image transformations between the source domain and the predefined target domain. Besides, by integrating the adversarial loss, classification loss, cycle consistency loss, and L1 penalty, a single generator in MP-GAN can learn the class discriminative maps for multiple classes. Extensive experimental results on Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset demonstrate that MP-GAN achieves superior performance compared with the existing methods. The lesions visualized by MP-GAN are also consistent with what clinicians observe.

Publication Date


  • 2022

Citation


  • Yu, W., Lei, B., Wang, S., Liu, Y., Feng, Z., Hu, Y., . . . Ng, M. K. (2022). Morphological Feature Visualization of Alzheimer's Disease via Multidirectional Perception GAN. IEEE Transactions on Neural Networks and Learning Systems. doi:10.1109/TNNLS.2021.3118369

Scopus Eid


  • 2-s2.0-85127032767

Web Of Science Accession Number


Abstract


  • The diagnosis of early stages of Alzheimer's disease (AD) is essential for timely treatment to slow further deterioration. Visualizing the morphological features for early stages of AD is of great clinical value. In this work, a novel multidirectional perception generative adversarial network (MP-GAN) is proposed to visualize the morphological features indicating the severity of AD for patients of different stages. Specifically, by introducing a novel multidirectional mapping mechanism into the model, the proposed MP-GAN can capture the salient global features efficiently. Thus, using the class discriminative map from the generator, the proposed model can clearly delineate the subtle lesions via MR image transformations between the source domain and the predefined target domain. Besides, by integrating the adversarial loss, classification loss, cycle consistency loss, and L1 penalty, a single generator in MP-GAN can learn the class discriminative maps for multiple classes. Extensive experimental results on Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset demonstrate that MP-GAN achieves superior performance compared with the existing methods. The lesions visualized by MP-GAN are also consistent with what clinicians observe.

Publication Date


  • 2022

Citation


  • Yu, W., Lei, B., Wang, S., Liu, Y., Feng, Z., Hu, Y., . . . Ng, M. K. (2022). Morphological Feature Visualization of Alzheimer's Disease via Multidirectional Perception GAN. IEEE Transactions on Neural Networks and Learning Systems. doi:10.1109/TNNLS.2021.3118369

Scopus Eid


  • 2-s2.0-85127032767

Web Of Science Accession Number