Skip to main content
placeholder image

Distance Protection of Transmission Lines in Presence of Inverter-Based Resources: A New Earth Fault Detection Scheme during Asymmetrical Power Swings

Journal Article


Abstract


  • Although it is commonly assumed that power swing is symmetrical and will have identical effects on all three-phase voltages and currents, there is another type of power swing, which is asymmetrical and mainly occurs during single-pole tripping (SPT), the impact of which on power systems integrated with the inverter-based resources (IBRs) has not been investigated so far. Since the likelihood of the occurrence of asymmetrical power swing is increasing in today's heavily loaded transmission lines, this article investigates the impact of IBR integration on the performance of distance protection during single-pole tripping. Furthermore, a new scheme is proposed to detect earth faults that occur during asymmetrical power swings to enhance the performance of power swing blocking functions. To do so, the superimposed component of the zero-sequence current during SPT is extracted. Then, the moving average window is used to calculate the average of both zero-sequence current and its superimposed component. Furthermore, to enhance the security of the proposed scheme, a new technique based on the phase angle shift between the three-phase currents is devised to detect the asymmetrical power swing conditions. This article shows that as the penetration level of IBRs increases, the standard reclosing dead-time needs to be revisited otherwise it can create an unstable power swing condition, even during SPT. Moreover, this article shows that the proposed earth fault detection scheme can efficiently detect all single-line-to-ground faults occurring during SPT.

Publication Date


  • 2022

Citation


  • Jalilian, A., Muttaqi, K., Sutanto, D., & Robinson, D. (2022). Distance Protection of Transmission Lines in Presence of Inverter-Based Resources: A New Earth Fault Detection Scheme during Asymmetrical Power Swings. IEEE Transactions on Industry Applications, 58(2), 1899-1909. doi:10.1109/TIA.2022.3146219

Scopus Eid


  • 2-s2.0-85124104843

Start Page


  • 1899

End Page


  • 1909

Volume


  • 58

Issue


  • 2

Abstract


  • Although it is commonly assumed that power swing is symmetrical and will have identical effects on all three-phase voltages and currents, there is another type of power swing, which is asymmetrical and mainly occurs during single-pole tripping (SPT), the impact of which on power systems integrated with the inverter-based resources (IBRs) has not been investigated so far. Since the likelihood of the occurrence of asymmetrical power swing is increasing in today's heavily loaded transmission lines, this article investigates the impact of IBR integration on the performance of distance protection during single-pole tripping. Furthermore, a new scheme is proposed to detect earth faults that occur during asymmetrical power swings to enhance the performance of power swing blocking functions. To do so, the superimposed component of the zero-sequence current during SPT is extracted. Then, the moving average window is used to calculate the average of both zero-sequence current and its superimposed component. Furthermore, to enhance the security of the proposed scheme, a new technique based on the phase angle shift between the three-phase currents is devised to detect the asymmetrical power swing conditions. This article shows that as the penetration level of IBRs increases, the standard reclosing dead-time needs to be revisited otherwise it can create an unstable power swing condition, even during SPT. Moreover, this article shows that the proposed earth fault detection scheme can efficiently detect all single-line-to-ground faults occurring during SPT.

Publication Date


  • 2022

Citation


  • Jalilian, A., Muttaqi, K., Sutanto, D., & Robinson, D. (2022). Distance Protection of Transmission Lines in Presence of Inverter-Based Resources: A New Earth Fault Detection Scheme during Asymmetrical Power Swings. IEEE Transactions on Industry Applications, 58(2), 1899-1909. doi:10.1109/TIA.2022.3146219

Scopus Eid


  • 2-s2.0-85124104843

Start Page


  • 1899

End Page


  • 1909

Volume


  • 58

Issue


  • 2