Skip to main content
placeholder image

Short-Term Lateral Behavior Reasoning for Target Vehicles Considering Driver Preview Characteristic

Journal Article


Abstract


  • A timely understanding of target vehicles (TVs) lateral behavior is essential for the decision-making and control of host vehicle. Existing physical model-based methods such as motion-based method and multiple centerline-based method are generally constructed based on TV pose and longitudinal velocity, and tend to ignore TV preview driving characteristic and other useful information such as lateral velocity and yaw rate. To address these issues, a driver preview and multiple centerline model-based probabilistic behavior recognition architecture is proposed for timely and accurate TV lateral behavior prediction. Firstly, a driver preview model is used to describe vehicle preview driving characteristic, and TV preview lateral offset and preview lateral velocity are calculated with TV states and road reference information. Then, the preview lateral offset and preview lateral velocity are combined with multiple centerline model for TV lateral behavior reasoning based on the interacting multiple model-based probabilistic behavior recognition algorithm. With this method, TV preview driving characteristic and lateral motion states are combined for precise TV lateral behavior description. Furthermore, to predict short-term lateral behavior, a preview lateral velocity-dependent transition probability matrix model constructed with Gaussian cumulative distribution function is proposed. Simulation and experimental results show that the proposed method considering vehicle preview driving characteristic predicts TV lateral behavior earlier than the conventional method.

Publication Date


  • 2021

Citation


  • Zhou, Z., Wang, Y., Liu, R., Wei, C., Du, H., & Yin, C. (2021). Short-Term Lateral Behavior Reasoning for Target Vehicles Considering Driver Preview Characteristic. IEEE Transactions on Intelligent Transportation Systems. doi:10.1109/TITS.2021.3107310

Scopus Eid


  • 2-s2.0-85114711047

Web Of Science Accession Number


Abstract


  • A timely understanding of target vehicles (TVs) lateral behavior is essential for the decision-making and control of host vehicle. Existing physical model-based methods such as motion-based method and multiple centerline-based method are generally constructed based on TV pose and longitudinal velocity, and tend to ignore TV preview driving characteristic and other useful information such as lateral velocity and yaw rate. To address these issues, a driver preview and multiple centerline model-based probabilistic behavior recognition architecture is proposed for timely and accurate TV lateral behavior prediction. Firstly, a driver preview model is used to describe vehicle preview driving characteristic, and TV preview lateral offset and preview lateral velocity are calculated with TV states and road reference information. Then, the preview lateral offset and preview lateral velocity are combined with multiple centerline model for TV lateral behavior reasoning based on the interacting multiple model-based probabilistic behavior recognition algorithm. With this method, TV preview driving characteristic and lateral motion states are combined for precise TV lateral behavior description. Furthermore, to predict short-term lateral behavior, a preview lateral velocity-dependent transition probability matrix model constructed with Gaussian cumulative distribution function is proposed. Simulation and experimental results show that the proposed method considering vehicle preview driving characteristic predicts TV lateral behavior earlier than the conventional method.

Publication Date


  • 2021

Citation


  • Zhou, Z., Wang, Y., Liu, R., Wei, C., Du, H., & Yin, C. (2021). Short-Term Lateral Behavior Reasoning for Target Vehicles Considering Driver Preview Characteristic. IEEE Transactions on Intelligent Transportation Systems. doi:10.1109/TITS.2021.3107310

Scopus Eid


  • 2-s2.0-85114711047

Web Of Science Accession Number