Skip to main content
placeholder image

3D-Printed Wearable Electrochemical Energy Devices

Journal Article


Abstract


  • Emerging markets for wearable electronics have stimulated a rapidly growing demand for the commercialization of flexible and reliable energy storage and conversion units (including batteries, supercapacitors, and thermoelectrochemical cells). 3D printing, a rapidly growing suite of fabrication technologies, is extensively used in the above-mentioned energy-related areas owing to its relatively low cost, freedom of design, and controllable, reproducible prototyping capability. However, there remain challenges in processable ink formulation and accurate material/device design. By summarizing the recent progress in 3D-printed wearable electrochemical energy devices and discussing the current limitations and future perspectives, this article is expected to serve as a reference for the scalable fabrication of advanced energy systems via 3D printing.

Publication Date


  • 2022

Citation


  • Zhang, S., Liu, Y., Hao, J., Wallace, G. G., Beirne, S., & Chen, J. (2022). 3D-Printed Wearable Electrochemical Energy Devices. Advanced Functional Materials, 32(3). doi:10.1002/adfm.202103092

Scopus Eid


  • 2-s2.0-85111512388

Volume


  • 32

Issue


  • 3

Abstract


  • Emerging markets for wearable electronics have stimulated a rapidly growing demand for the commercialization of flexible and reliable energy storage and conversion units (including batteries, supercapacitors, and thermoelectrochemical cells). 3D printing, a rapidly growing suite of fabrication technologies, is extensively used in the above-mentioned energy-related areas owing to its relatively low cost, freedom of design, and controllable, reproducible prototyping capability. However, there remain challenges in processable ink formulation and accurate material/device design. By summarizing the recent progress in 3D-printed wearable electrochemical energy devices and discussing the current limitations and future perspectives, this article is expected to serve as a reference for the scalable fabrication of advanced energy systems via 3D printing.

Publication Date


  • 2022

Citation


  • Zhang, S., Liu, Y., Hao, J., Wallace, G. G., Beirne, S., & Chen, J. (2022). 3D-Printed Wearable Electrochemical Energy Devices. Advanced Functional Materials, 32(3). doi:10.1002/adfm.202103092

Scopus Eid


  • 2-s2.0-85111512388

Volume


  • 32

Issue


  • 3