Skip to main content
placeholder image

Spatio-temporal evolution of Australasian monsoon hydroclimate over the last 40,000 years

Journal Article


Abstract


  • Maritime Continent (MC) convection drives zonal and meridional climate modes, including the Australasian monsoon system, but its role in past global climate change remains uncertain. Here we use speleothem oxygen isotope (δ 18 O) records from a latitudinal transect across the MC, and a new critically located record for southwest Sulawesi, Indonesia, to reconstruct spatial hydroclimate variability in the Australasian monsoon domain over the last 40,000 yr. Our results show that atmospheric convection in the core MC region was reduced from ∼40,000 to 12,000 yr ago and strengthened rapidly only after the inundation of shallow continental shelves in the region, well after the onset of deglaciation. Interestingly, the millennial-scale climatic impacts of North Atlantic Heinrich events are not evident in Sulawesi. Together with climate model simulations, we demonstrate that changes in deep atmospheric convection dominate glacial–interglacial hydroclimate over the MC, whereas latitudinal shifts in the mean location of the InterTropical Convergence Zone control rainfall patterns during abrupt climate changes.

Publication Date


  • 2019

Citation


  • Krause, C. E., Gagan, M. K., Dunbar, G. B., Hantoro, W. S., Hellstrom, J. C., Cheng, H., . . . Rifai, H. (2019). Spatio-temporal evolution of Australasian monsoon hydroclimate over the last 40,000 years. Earth and Planetary Science Letters, 513, 103-112. doi:10.1016/j.epsl.2019.01.045

Scopus Eid


  • 2-s2.0-85062273451

Web Of Science Accession Number


Start Page


  • 103

End Page


  • 112

Volume


  • 513

Abstract


  • Maritime Continent (MC) convection drives zonal and meridional climate modes, including the Australasian monsoon system, but its role in past global climate change remains uncertain. Here we use speleothem oxygen isotope (δ 18 O) records from a latitudinal transect across the MC, and a new critically located record for southwest Sulawesi, Indonesia, to reconstruct spatial hydroclimate variability in the Australasian monsoon domain over the last 40,000 yr. Our results show that atmospheric convection in the core MC region was reduced from ∼40,000 to 12,000 yr ago and strengthened rapidly only after the inundation of shallow continental shelves in the region, well after the onset of deglaciation. Interestingly, the millennial-scale climatic impacts of North Atlantic Heinrich events are not evident in Sulawesi. Together with climate model simulations, we demonstrate that changes in deep atmospheric convection dominate glacial–interglacial hydroclimate over the MC, whereas latitudinal shifts in the mean location of the InterTropical Convergence Zone control rainfall patterns during abrupt climate changes.

Publication Date


  • 2019

Citation


  • Krause, C. E., Gagan, M. K., Dunbar, G. B., Hantoro, W. S., Hellstrom, J. C., Cheng, H., . . . Rifai, H. (2019). Spatio-temporal evolution of Australasian monsoon hydroclimate over the last 40,000 years. Earth and Planetary Science Letters, 513, 103-112. doi:10.1016/j.epsl.2019.01.045

Scopus Eid


  • 2-s2.0-85062273451

Web Of Science Accession Number


Start Page


  • 103

End Page


  • 112

Volume


  • 513