Skip to main content
placeholder image

Influence of long-term operation of supercritical carbon dioxide based enhanced geothermal system on mineralogical and microstructurally-induced mechanical alteration of surrounding rock mass

Journal Article


Abstract


  • Chemico-microstructural and mineralogically-induced time-dependent mechanical alterations of the reservoir rock found in the peripheral zone of a CO2-based EGS is experimentally investigated. A series of uniaxial compressive and triaxial (under 30 MPa constant confining pressure with different temperatures; 25-300 ��C) strength tests on granite specimens reacted in ScCO2+water medium for different time periods was performed by coupling acoustic emission (AE) technique. The results were compared with those for intact and water-reacted rock specimens in order to better understand this weakening phenomenon. Scanning electron microscopy (SEM) was also incorporated to evaluate the microstructural and mineralogical alterations. The results indicated that the mineralogical structure of Harcourt granite rock specimens was mainly altered by the dissolution of silicate minerals and plagioclase phase feldspar minerals. In addition, enhanced precipitation of secondary clay minerals including kaolinite, smectite, and illite was observed in the ScCO2+water-reacted rock specimens. The average compressive strength of ScCO2/water-reacted granite specimens found to be reduced with the increase of reaction period. Furthermore, 3.81%, 5.08%, 5.66% and 0.52% reductions in failure strength resulted under 30 MPa confining pressure in 6 months ScCO2/water-reacted granite specimens at 25 ��C, 100 ��C, 200 ��C and 300 ��C temperatures, respectively, compared to intact rock values at these temperatures. The post-failure analysis also revealed that the ScCO2/water reaction significantly alters the post-failure behaviour due to micro-mineralogically-induced weakening inside the rock pore structure. It was concluded that enhanced mineral precipitation and dissolution influence in time-dependent degradation of the surrounding rock mass which influence in long-term operation of the geothermal system.

Publication Date


  • 2019

Citation


  • Isaka, B. L. A., Ranjith, P. G., Rathnaweera, T. D., Perera, M. S. A., & Kumari, W. G. P. (2019). Influence of long-term operation of supercritical carbon dioxide based enhanced geothermal system on mineralogical and microstructurally-induced mechanical alteration of surrounding rock mass. Renewable Energy, 136, 428-441. doi:10.1016/j.renene.2018.12.104

Scopus Eid


  • 2-s2.0-85059689767

Start Page


  • 428

End Page


  • 441

Volume


  • 136

Issue


Place Of Publication


Abstract


  • Chemico-microstructural and mineralogically-induced time-dependent mechanical alterations of the reservoir rock found in the peripheral zone of a CO2-based EGS is experimentally investigated. A series of uniaxial compressive and triaxial (under 30 MPa constant confining pressure with different temperatures; 25-300 ��C) strength tests on granite specimens reacted in ScCO2+water medium for different time periods was performed by coupling acoustic emission (AE) technique. The results were compared with those for intact and water-reacted rock specimens in order to better understand this weakening phenomenon. Scanning electron microscopy (SEM) was also incorporated to evaluate the microstructural and mineralogical alterations. The results indicated that the mineralogical structure of Harcourt granite rock specimens was mainly altered by the dissolution of silicate minerals and plagioclase phase feldspar minerals. In addition, enhanced precipitation of secondary clay minerals including kaolinite, smectite, and illite was observed in the ScCO2+water-reacted rock specimens. The average compressive strength of ScCO2/water-reacted granite specimens found to be reduced with the increase of reaction period. Furthermore, 3.81%, 5.08%, 5.66% and 0.52% reductions in failure strength resulted under 30 MPa confining pressure in 6 months ScCO2/water-reacted granite specimens at 25 ��C, 100 ��C, 200 ��C and 300 ��C temperatures, respectively, compared to intact rock values at these temperatures. The post-failure analysis also revealed that the ScCO2/water reaction significantly alters the post-failure behaviour due to micro-mineralogically-induced weakening inside the rock pore structure. It was concluded that enhanced mineral precipitation and dissolution influence in time-dependent degradation of the surrounding rock mass which influence in long-term operation of the geothermal system.

Publication Date


  • 2019

Citation


  • Isaka, B. L. A., Ranjith, P. G., Rathnaweera, T. D., Perera, M. S. A., & Kumari, W. G. P. (2019). Influence of long-term operation of supercritical carbon dioxide based enhanced geothermal system on mineralogical and microstructurally-induced mechanical alteration of surrounding rock mass. Renewable Energy, 136, 428-441. doi:10.1016/j.renene.2018.12.104

Scopus Eid


  • 2-s2.0-85059689767

Start Page


  • 428

End Page


  • 441

Volume


  • 136

Issue


Place Of Publication