Skip to main content
placeholder image

Generalized Bhaskar Rao designs of block size three

Journal Article


Abstract


  • We show that the necessary conditions λ≡0 (mod |G|), λ(υ-1)≡0 (mod 2), λυ(υ-1)≡ 0 (mod 6) for |G| odd, 0 (mod 24) for |G| even, are sufficient for the existence of a generalized Bhaskar Rao design GBRD(υ,b,r,3,λ;G) for the elementary abelian group G, of each order |G|. © 1985.

Publication Date


  • 1985

Citation


  • Seberry, J. (1985). Generalized Bhaskar Rao designs of block size three. Journal of Statistical Planning and Inference, 11(3), 373-379. doi:10.1016/0378-3758(85)90042-4

Scopus Eid


  • 2-s2.0-0002091955

Web Of Science Accession Number


Start Page


  • 373

End Page


  • 379

Volume


  • 11

Issue


  • 3

Abstract


  • We show that the necessary conditions λ≡0 (mod |G|), λ(υ-1)≡0 (mod 2), λυ(υ-1)≡ 0 (mod 6) for |G| odd, 0 (mod 24) for |G| even, are sufficient for the existence of a generalized Bhaskar Rao design GBRD(υ,b,r,3,λ;G) for the elementary abelian group G, of each order |G|. © 1985.

Publication Date


  • 1985

Citation


  • Seberry, J. (1985). Generalized Bhaskar Rao designs of block size three. Journal of Statistical Planning and Inference, 11(3), 373-379. doi:10.1016/0378-3758(85)90042-4

Scopus Eid


  • 2-s2.0-0002091955

Web Of Science Accession Number


Start Page


  • 373

End Page


  • 379

Volume


  • 11

Issue


  • 3