Skip to main content
placeholder image

Tunable magnetism in ferroelectric ¿-In2Se3by hole-doping

Journal Article


Abstract


  • Two-dimensional (2D) multiferroics attract intensive investigations because of underlying science and their potential applications. Although many 2D systems have been observed/predicted to be ferroelectric or ferromagnetic, 2D materials with both ferroic properties are still scarce. By using first-principles calculations, we predict that hole-doping can induce robust ferromagnetism in 2D ferroelectric α-In2Se3 due to its unique flatband structure, and the Curie temperature (TC) can be much higher than room temperature. Moreover, the doping concentration, strain, and number of layers can effectively modulate the magnetic moment and TC of the material. Interestingly, strong magnetoelectric coupling is found at the surface of hole doped multilayer α-In2Se3, which allows nonvolatile electric control of magnetization. Our work provides a feasible approach for designing/searching 2D multiferroics with great potential in future device applications, such as memory devices and sensors.

Publication Date


  • 2021

Citation


  • Liu, C., Wang, B., Jia, G., Liu, P., Yin, H., Guan, S., & Cheng, Z. (2021). Tunable magnetism in ferroelectric ¿-In2Se3by hole-doping. Applied Physics Letters, 118(7). doi:10.1063/5.0039842

Scopus Eid


  • 2-s2.0-85100946584

Web Of Science Accession Number


Volume


  • 118

Issue


  • 7

Abstract


  • Two-dimensional (2D) multiferroics attract intensive investigations because of underlying science and their potential applications. Although many 2D systems have been observed/predicted to be ferroelectric or ferromagnetic, 2D materials with both ferroic properties are still scarce. By using first-principles calculations, we predict that hole-doping can induce robust ferromagnetism in 2D ferroelectric α-In2Se3 due to its unique flatband structure, and the Curie temperature (TC) can be much higher than room temperature. Moreover, the doping concentration, strain, and number of layers can effectively modulate the magnetic moment and TC of the material. Interestingly, strong magnetoelectric coupling is found at the surface of hole doped multilayer α-In2Se3, which allows nonvolatile electric control of magnetization. Our work provides a feasible approach for designing/searching 2D multiferroics with great potential in future device applications, such as memory devices and sensors.

Publication Date


  • 2021

Citation


  • Liu, C., Wang, B., Jia, G., Liu, P., Yin, H., Guan, S., & Cheng, Z. (2021). Tunable magnetism in ferroelectric ¿-In2Se3by hole-doping. Applied Physics Letters, 118(7). doi:10.1063/5.0039842

Scopus Eid


  • 2-s2.0-85100946584

Web Of Science Accession Number


Volume


  • 118

Issue


  • 7