Skip to main content
placeholder image

Modes of deformation in rubber-modified thermoplastics during tensile impact

Journal Article


Abstract


  • Real-time small-angle X-ray scattering (RTSAXS) studies were performed on a series of rubber-modified thermoplastics. Scattering patterns were measured at successive time intervals as short as 1.8 ms and were analysed to determine the plastic strain due to crazing. Simultaneous measurements of the absorption of the primary beam by the sample allowed the total plastic strain to be computed. The plastic strain due to other deformation mechanisms, e.g. particle cavitation and macroscopic shear deformation was determined by the difference. Samples of commercial thicknesses can be studied at high rates of deformation without the inherent limitations of microscopy and its requirement of thin samples (i.e., plane strain constraint is maintained on sample morphology). Contrary to the conclusions drawn from many previous dilatation-based studies, it has been demonstrated that the strain due to non-crazing mechanisms, such as rubber particle cavitation, and deformation of the glassy ligaments between rubber particles, occurs before that due to crazing mechanisms. Crazing accounts for at most only half of the total plastic strain in HIPS (high impact polystyrene) and ABS (rubber-modified styrene-acrylonitrile copolymer) materials. The proportion of strain attributable to crazing can be much less than half the total in thermoplastic systems with considerable shear yield during plastic deformation. The predominant deformation mechanism in polycarbonate-ABS blends is shear in the PC (polycarbonate) with associated rubber gel particle cavitation in the ABS. This cavitation means that there appears to be a direct relationship between gel particle rubber content in the ABS and toughness of the blend. The mechanism is the same whether the tensile stress is in the direction parallel or perpendicular to the injection-moulded orientation, with simply less total strain being reached before fracture in the weaker perpendicular direction. Crazing, although the precursor to final fracture, occurs after the predominant mechanism and contributes only a few per cent to the total plastic deformation. �� 1991 Chapman & Hall.

UOW Authors


  •   Brown, Hugh (external author)

Publication Date


  • 1991

Citation


  • Bubeck, R. A., Buckley, D. J., Kramer, E. J., & Brown, H. R. (1991). Modes of deformation in rubber-modified thermoplastics during tensile impact. Journal of Materials Science, 26(23), 6249-6259. doi:10.1007/BF02387801

Scopus Eid


  • 2-s2.0-0000832688

Web Of Science Accession Number


Start Page


  • 6249

End Page


  • 6259

Volume


  • 26

Issue


  • 23

Place Of Publication


Abstract


  • Real-time small-angle X-ray scattering (RTSAXS) studies were performed on a series of rubber-modified thermoplastics. Scattering patterns were measured at successive time intervals as short as 1.8 ms and were analysed to determine the plastic strain due to crazing. Simultaneous measurements of the absorption of the primary beam by the sample allowed the total plastic strain to be computed. The plastic strain due to other deformation mechanisms, e.g. particle cavitation and macroscopic shear deformation was determined by the difference. Samples of commercial thicknesses can be studied at high rates of deformation without the inherent limitations of microscopy and its requirement of thin samples (i.e., plane strain constraint is maintained on sample morphology). Contrary to the conclusions drawn from many previous dilatation-based studies, it has been demonstrated that the strain due to non-crazing mechanisms, such as rubber particle cavitation, and deformation of the glassy ligaments between rubber particles, occurs before that due to crazing mechanisms. Crazing accounts for at most only half of the total plastic strain in HIPS (high impact polystyrene) and ABS (rubber-modified styrene-acrylonitrile copolymer) materials. The proportion of strain attributable to crazing can be much less than half the total in thermoplastic systems with considerable shear yield during plastic deformation. The predominant deformation mechanism in polycarbonate-ABS blends is shear in the PC (polycarbonate) with associated rubber gel particle cavitation in the ABS. This cavitation means that there appears to be a direct relationship between gel particle rubber content in the ABS and toughness of the blend. The mechanism is the same whether the tensile stress is in the direction parallel or perpendicular to the injection-moulded orientation, with simply less total strain being reached before fracture in the weaker perpendicular direction. Crazing, although the precursor to final fracture, occurs after the predominant mechanism and contributes only a few per cent to the total plastic deformation. �� 1991 Chapman & Hall.

UOW Authors


  •   Brown, Hugh (external author)

Publication Date


  • 1991

Citation


  • Bubeck, R. A., Buckley, D. J., Kramer, E. J., & Brown, H. R. (1991). Modes of deformation in rubber-modified thermoplastics during tensile impact. Journal of Materials Science, 26(23), 6249-6259. doi:10.1007/BF02387801

Scopus Eid


  • 2-s2.0-0000832688

Web Of Science Accession Number


Start Page


  • 6249

End Page


  • 6259

Volume


  • 26

Issue


  • 23

Place Of Publication