Skip to main content
placeholder image

Product of four Hadamard matrices

Journal Article


Abstract


  • We prove that if there exist Hadamard matrices of order 4m, 4n, 4p, and 4q then there exists an Hadamard matrix of order 16mnpq. This improves and extends the known result of Agayan that there exists a Hadamard matrix of order 8mn if there exist Hadamard matrices of order 4m and 4n. © 1992.

Publication Date


  • 1992

Citation


  • Craigen, R., Seberry, J., & Zhang, X. M. (1992). Product of four Hadamard matrices. Journal of Combinatorial Theory, Series A, 59(2), 318-320. doi:10.1016/0097-3165(92)90073-4

Scopus Eid


  • 2-s2.0-0040081183

Web Of Science Accession Number


Start Page


  • 318

End Page


  • 320

Volume


  • 59

Issue


  • 2

Abstract


  • We prove that if there exist Hadamard matrices of order 4m, 4n, 4p, and 4q then there exists an Hadamard matrix of order 16mnpq. This improves and extends the known result of Agayan that there exists a Hadamard matrix of order 8mn if there exist Hadamard matrices of order 4m and 4n. © 1992.

Publication Date


  • 1992

Citation


  • Craigen, R., Seberry, J., & Zhang, X. M. (1992). Product of four Hadamard matrices. Journal of Combinatorial Theory, Series A, 59(2), 318-320. doi:10.1016/0097-3165(92)90073-4

Scopus Eid


  • 2-s2.0-0040081183

Web Of Science Accession Number


Start Page


  • 318

End Page


  • 320

Volume


  • 59

Issue


  • 2