Skip to main content
placeholder image

High field nmr study of the binding of lead(ii) to cysteine and glutathione

Journal Article


Abstract


  • High field proton and carbon-13 NMR spectroscopy has been used to study the interaction of lead (II) with both cysteine and the tripeptide glutathione in D20 over a wide pD range. No binding of lead (II) to either biological ligand was observed in acid solution. In alkaline solution, PbL and/or PbL2 complexes were formed with cysteine, depending on the [Pb2+ ]:[cysteine] ratio. Chemical shifts experienced by the cysteine protons in the 1:1 complex, together with calculated rotamer populations, indicate a mixture of terdentate (NH2, COO-, S- ) and bidentate coordination with binding through the sulfur and carboxylate groups favoured in the bidentate case. For the PbL2 complex, only limited chemical shift rs pD data could be obtained due to precipitation problems between pD 3.4 and 9.8. However, in alkaline solution, coordination of Pb2+ through the S-donor was again confirmed. With glutathione, both PbL and PbL2 complexes were also formed in alkaline solution. Proton chemical shift data are inconsistent with a previously proposed tetradentate binding mode of glutathione. For the PbL2 complex no change in the partial rotamer populations of the cysteinyl residue occurs upon complexation, indicating monodentate coordination only through the S-group. Chemical shift data also support monodentate coordination through the S-group and monodentate coordination through the S-group of glutathione in the 1:1 PbL complex. © 1993, Taylor & Francis Group, LLC. All rights reserved.

Publication Date


  • 1993

Citation


  • Kane-maguire, L. A. P., & Riley, P. J. (1993). High field nmr study of the binding of lead(ii) to cysteine and glutathione. Journal of Coordination Chemistry, 28(2), 105-120. doi:10.1080/00958979308035150

Scopus Eid


  • 2-s2.0-0003363288

Web Of Science Accession Number


Start Page


  • 105

End Page


  • 120

Volume


  • 28

Issue


  • 2

Abstract


  • High field proton and carbon-13 NMR spectroscopy has been used to study the interaction of lead (II) with both cysteine and the tripeptide glutathione in D20 over a wide pD range. No binding of lead (II) to either biological ligand was observed in acid solution. In alkaline solution, PbL and/or PbL2 complexes were formed with cysteine, depending on the [Pb2+ ]:[cysteine] ratio. Chemical shifts experienced by the cysteine protons in the 1:1 complex, together with calculated rotamer populations, indicate a mixture of terdentate (NH2, COO-, S- ) and bidentate coordination with binding through the sulfur and carboxylate groups favoured in the bidentate case. For the PbL2 complex, only limited chemical shift rs pD data could be obtained due to precipitation problems between pD 3.4 and 9.8. However, in alkaline solution, coordination of Pb2+ through the S-donor was again confirmed. With glutathione, both PbL and PbL2 complexes were also formed in alkaline solution. Proton chemical shift data are inconsistent with a previously proposed tetradentate binding mode of glutathione. For the PbL2 complex no change in the partial rotamer populations of the cysteinyl residue occurs upon complexation, indicating monodentate coordination only through the S-group. Chemical shift data also support monodentate coordination through the S-group and monodentate coordination through the S-group of glutathione in the 1:1 PbL complex. © 1993, Taylor & Francis Group, LLC. All rights reserved.

Publication Date


  • 1993

Citation


  • Kane-maguire, L. A. P., & Riley, P. J. (1993). High field nmr study of the binding of lead(ii) to cysteine and glutathione. Journal of Coordination Chemistry, 28(2), 105-120. doi:10.1080/00958979308035150

Scopus Eid


  • 2-s2.0-0003363288

Web Of Science Accession Number


Start Page


  • 105

End Page


  • 120

Volume


  • 28

Issue


  • 2