Abstract

We present a new approach to Poincare duality for CuntzPimsner algebras. We
provide sufficient conditions under which Poincare selfduality for the
coefficient algebra of a Hilbert bimodule lifts to Poincare selfduality for
the associated CuntzPimsner algebra.
With these conditions in hand, we can constructively produce fundamental
classes in Ktheory for a wide range of examples. We can also produce
Khomology fundamental classes for the important examples of CuntzKrieger
algebras (following KaminkerPutnam) and crossed products of manifolds by
isometries, and their noncommutative analogues.