Abstract
-
Carbon nanotube (CNT) has been widely applied to transition metal oxides anodes for lithium ion batteries, acting as a buffer, hollow backbone and conductive additive. Since the presence of N in carbon materials can enhance the reactivity and electrical conductivity, N-doped carbon nanotube (N-CNT) might be a better choice than pure CNT, which is exemplified by coaxial manganese dioxide@N-doped carbon nanotubes as a superior anode. The electrochemical properties of MnO2@N-CNT are investigated in terms of cycling stability and rate capability. The nanocomposite can deliver a specific capacity of 1415 mAh g-1 after 100 cycles at the current density of 100 mA g-1, which is better than that of MnO2@commercial CNT and MnO2. The excellent performance might be related to the integration of hollow structure, one-dimensional nanoscale size as well as combination with N-doped carbon materials.