Skip to main content
placeholder image

Strain engineering of two-dimensional multilayered heterostructures for beyond-lithium-based rechargeable batteries

Journal Article


Abstract


  • Beyond-lithium-ion batteries are promising candidates for high-energy-density, low-cost and large-scale energy storage applications. However, the main challenge lies in the development of suitable electrode materials. Here, we demonstrate a new type of zero-strain cathode for reversible intercalation of beyond-Li+ ions (Na+, K+, Zn2+, Al3+) through interface strain engineering of a 2D multilayered VOPO4-graphene heterostructure. In-situ characterization and theoretical calculations reveal a reversible intercalation mechanism of cations in the 2D multilayered heterostructure with a negligible volume change. When applied as cathodes in K+-ion batteries, we achieve a high specific capacity of 160 mA h g���1 and a large energy density of ~570 W h kg���1, presenting the best reported performance to date. Moreover, the as-prepared 2D multilayered heterostructure can also be extended as cathodes for high-performance Na+, Zn2+, and Al3+-ion batteries. This work heralds a promising strategy to utilize strain engineering of 2D materials for advanced energy storage applications.

UOW Authors


Publication Date


  • 2020

Citation


  • Xiong, P., Zhang, F., Zhang, X., Wang, S., Liu, H., Sun, B., . . . Wang, G. (2020). Strain engineering of two-dimensional multilayered heterostructures for beyond-lithium-based rechargeable batteries. Nature Communications, 11(1). doi:10.1038/s41467-020-17014-w

Scopus Eid


  • 2-s2.0-85087413533

Volume


  • 11

Issue


  • 1

Place Of Publication


Abstract


  • Beyond-lithium-ion batteries are promising candidates for high-energy-density, low-cost and large-scale energy storage applications. However, the main challenge lies in the development of suitable electrode materials. Here, we demonstrate a new type of zero-strain cathode for reversible intercalation of beyond-Li+ ions (Na+, K+, Zn2+, Al3+) through interface strain engineering of a 2D multilayered VOPO4-graphene heterostructure. In-situ characterization and theoretical calculations reveal a reversible intercalation mechanism of cations in the 2D multilayered heterostructure with a negligible volume change. When applied as cathodes in K+-ion batteries, we achieve a high specific capacity of 160 mA h g���1 and a large energy density of ~570 W h kg���1, presenting the best reported performance to date. Moreover, the as-prepared 2D multilayered heterostructure can also be extended as cathodes for high-performance Na+, Zn2+, and Al3+-ion batteries. This work heralds a promising strategy to utilize strain engineering of 2D materials for advanced energy storage applications.

UOW Authors


Publication Date


  • 2020

Citation


  • Xiong, P., Zhang, F., Zhang, X., Wang, S., Liu, H., Sun, B., . . . Wang, G. (2020). Strain engineering of two-dimensional multilayered heterostructures for beyond-lithium-based rechargeable batteries. Nature Communications, 11(1). doi:10.1038/s41467-020-17014-w

Scopus Eid


  • 2-s2.0-85087413533

Volume


  • 11

Issue


  • 1

Place Of Publication