Skip to main content
placeholder image

Structure/function characterization of ¿-conotoxin KIIIA, an analgesic, nearly irreversible blocker of mammalian neuronal sodium channels

Journal Article


Abstract


  • Peptide neurotoxins from cone snails continue to supply compounds with therapeutic potential. Although several analgesic conotoxins have already reached human clinical trials, a continuing need exists for the discovery and development of novel nonopioid analgesics, such as subtype-selective sodium channel blockers. μ-Conotoxin KIIIA is representative of μ-conopeptides previously characterized as inhibitors of tetrodotoxin (TTX)-resistant sodium channels in amphibian dorsal root ganglion neurons. Here, we show that KIIIA has potent analgesic activity in the mouse pain model. Surprisingly, KIIIA was found to block most (>80%) of the TTX-sensitive, but only ∼20% of the TTX-resistant, sodium current in mouse dorsal root ganglion neurons. KIIIA was tested on cloned mammalian channels expressed in Xenopus oocytes. Both Na V1.2 and NaV1.6 were strongly blocked; within experimental wash times of 40-60 min, block was reversed very little for NaV1.2 and only partially for NaV1.6. Other isoforms were blocked reversibly: NaV1.3 (IC50 8 μM), NaV1.5 (IC50 284 μM), and NaV1.4 (IC50 80 nM). "Alanine-walk" and related analogs were synthesized and tested against both NaV1.2 and NaV1.4; replacement of Trp-8 resulted in reversible block of NaV1.2, whereas replacement of Lys-7, Trp-8, or Asp-11 yielded a more profound effect on the block of NaV1.4 than of NaV1.2. Taken together, these data suggest that KIIIA is an effective tool to study structure and function of NaV1.2 and that further engineering of μ-conopeptides belonging to the KIIIA group may provide subtype-selective pharmacological compounds for mammalian neuronal sodium channels and potential therapeutics for the treatment of pain. © 2007 by The American Society for Biochemistry and Molecular Biology, Inc.

Publication Date


  • 2007

Citation


  • Zhang, M. M., Green, B. R., Catlin, P., Fiedler, B., Azam, L., Chadwick, A., . . . Bulaj, G. (2007). Structure/function characterization of ¿-conotoxin KIIIA, an analgesic, nearly irreversible blocker of mammalian neuronal sodium channels. Journal of Biological Chemistry, 282(42), 30699-30706. doi:10.1074/jbc.M704616200

Scopus Eid


  • 2-s2.0-35349024767

Start Page


  • 30699

End Page


  • 30706

Volume


  • 282

Issue


  • 42

Abstract


  • Peptide neurotoxins from cone snails continue to supply compounds with therapeutic potential. Although several analgesic conotoxins have already reached human clinical trials, a continuing need exists for the discovery and development of novel nonopioid analgesics, such as subtype-selective sodium channel blockers. μ-Conotoxin KIIIA is representative of μ-conopeptides previously characterized as inhibitors of tetrodotoxin (TTX)-resistant sodium channels in amphibian dorsal root ganglion neurons. Here, we show that KIIIA has potent analgesic activity in the mouse pain model. Surprisingly, KIIIA was found to block most (>80%) of the TTX-sensitive, but only ∼20% of the TTX-resistant, sodium current in mouse dorsal root ganglion neurons. KIIIA was tested on cloned mammalian channels expressed in Xenopus oocytes. Both Na V1.2 and NaV1.6 were strongly blocked; within experimental wash times of 40-60 min, block was reversed very little for NaV1.2 and only partially for NaV1.6. Other isoforms were blocked reversibly: NaV1.3 (IC50 8 μM), NaV1.5 (IC50 284 μM), and NaV1.4 (IC50 80 nM). "Alanine-walk" and related analogs were synthesized and tested against both NaV1.2 and NaV1.4; replacement of Trp-8 resulted in reversible block of NaV1.2, whereas replacement of Lys-7, Trp-8, or Asp-11 yielded a more profound effect on the block of NaV1.4 than of NaV1.2. Taken together, these data suggest that KIIIA is an effective tool to study structure and function of NaV1.2 and that further engineering of μ-conopeptides belonging to the KIIIA group may provide subtype-selective pharmacological compounds for mammalian neuronal sodium channels and potential therapeutics for the treatment of pain. © 2007 by The American Society for Biochemistry and Molecular Biology, Inc.

Publication Date


  • 2007

Citation


  • Zhang, M. M., Green, B. R., Catlin, P., Fiedler, B., Azam, L., Chadwick, A., . . . Bulaj, G. (2007). Structure/function characterization of ¿-conotoxin KIIIA, an analgesic, nearly irreversible blocker of mammalian neuronal sodium channels. Journal of Biological Chemistry, 282(42), 30699-30706. doi:10.1074/jbc.M704616200

Scopus Eid


  • 2-s2.0-35349024767

Start Page


  • 30699

End Page


  • 30706

Volume


  • 282

Issue


  • 42