Skip to main content
placeholder image

Morphology and quantitative analysis of O phase during heat treatment of hot-deformed Ti2AlNb-based alloy

Journal Article


Abstract


  • A 1040°C-hot-deformed Ti2AlNb-based alloy solution-treated at 950°C and aged at different temperatures was quantitatively investigated. The microstructure, size of the phase, and microhardness of the deformed alloys were measured. The results indicated that the microstructure of the deformed Ti2AlNb-based alloy specimens comprise coarse O lath, fine O lath, equiaxed O/α2, and acicular O phase. More O phase was generated in the deformed alloy after heat treatment because the acicular O phase was more likely to nucleate and grow along the deformation-induced crystal defects such as dislocations and subgrain boundaries. After deformation and subsequent heat treatment, the acicular O phase of the resultant alloy became finer compared to that of the undeformed alloy, and the acicular O phase became coarser and longer with the elevated aging temperature, while the width of the O lath exhibited unobvious variations. The hot deformation facilitated the dissolution of the O lath but accelerated the precipitation of the acicular O phase. When the 950°C-solution-treated deformed Ti2AlNb-based alloy was then aged at 750°C for different periods, the phase content was nearly invariable, O and B2 phases eventually reached equilibrium, and the microstructure became stable and homogeneous.

Publication Date


  • 2018

Citation


  • Zhang, H. Y., Li, C., Ma, Z. Q., Yu, L. M., Li, H. J., & Liu, Y. C. (2018). Morphology and quantitative analysis of O phase during heat treatment of hot-deformed Ti2AlNb-based alloy. International Journal of Minerals, Metallurgy and Materials, 25(10), 1191-1200. doi:10.1007/s12613-018-1671-y

Scopus Eid


  • 2-s2.0-85054152875

Web Of Science Accession Number


Start Page


  • 1191

End Page


  • 1200

Volume


  • 25

Issue


  • 10

Abstract


  • A 1040°C-hot-deformed Ti2AlNb-based alloy solution-treated at 950°C and aged at different temperatures was quantitatively investigated. The microstructure, size of the phase, and microhardness of the deformed alloys were measured. The results indicated that the microstructure of the deformed Ti2AlNb-based alloy specimens comprise coarse O lath, fine O lath, equiaxed O/α2, and acicular O phase. More O phase was generated in the deformed alloy after heat treatment because the acicular O phase was more likely to nucleate and grow along the deformation-induced crystal defects such as dislocations and subgrain boundaries. After deformation and subsequent heat treatment, the acicular O phase of the resultant alloy became finer compared to that of the undeformed alloy, and the acicular O phase became coarser and longer with the elevated aging temperature, while the width of the O lath exhibited unobvious variations. The hot deformation facilitated the dissolution of the O lath but accelerated the precipitation of the acicular O phase. When the 950°C-solution-treated deformed Ti2AlNb-based alloy was then aged at 750°C for different periods, the phase content was nearly invariable, O and B2 phases eventually reached equilibrium, and the microstructure became stable and homogeneous.

Publication Date


  • 2018

Citation


  • Zhang, H. Y., Li, C., Ma, Z. Q., Yu, L. M., Li, H. J., & Liu, Y. C. (2018). Morphology and quantitative analysis of O phase during heat treatment of hot-deformed Ti2AlNb-based alloy. International Journal of Minerals, Metallurgy and Materials, 25(10), 1191-1200. doi:10.1007/s12613-018-1671-y

Scopus Eid


  • 2-s2.0-85054152875

Web Of Science Accession Number


Start Page


  • 1191

End Page


  • 1200

Volume


  • 25

Issue


  • 10