Skip to main content
placeholder image

Ultrahigh energy storage properties in (Sr0.7Bi0.2)TiO3-Bi(Mg0.5Zr0.5)O3 lead-free ceramics and potential for high-temperature capacitors

Journal Article


Abstract


  • Due to the enhanced demand for numerous electrical energy storage applications, including applications at elevated temperatures, dielectric capacitors with optimized energy storage properties have attracted extensive attention. In this study, a series of lead-free strontium bismuth titanate based relaxor ferroelectric ceramics have been successfully synthesized by high temperature solid-state reaction. The ultrahigh recoverable energy storage density of 4.2 J/cm3 under 380 kV/cm, with the high efficiency of 88%, was obtained in the sample with x = 0.06. Of particular importance is that this ceramic composition exhibits excellent energy storage performance over a wide work temperature up to 150 °C, with strong fatigue endurance and fast discharge speed. All these merits demonstrate the studied ceramic system is a potential candidate for high-temperature capacitors as energy storage devices.

Publication Date


  • 2020

Citation


  • Kong, X., Yang, L., Cheng, Z., & Zhang, S. (2020). Ultrahigh energy storage properties in (Sr0.7Bi0.2)TiO3-Bi(Mg0.5Zr0.5)O3 lead-free ceramics and potential for high-temperature capacitors. Materials, 13(1). doi:10.3390/ma13010180

Scopus Eid


  • 2-s2.0-85078934944

Volume


  • 13

Issue


  • 1

Abstract


  • Due to the enhanced demand for numerous electrical energy storage applications, including applications at elevated temperatures, dielectric capacitors with optimized energy storage properties have attracted extensive attention. In this study, a series of lead-free strontium bismuth titanate based relaxor ferroelectric ceramics have been successfully synthesized by high temperature solid-state reaction. The ultrahigh recoverable energy storage density of 4.2 J/cm3 under 380 kV/cm, with the high efficiency of 88%, was obtained in the sample with x = 0.06. Of particular importance is that this ceramic composition exhibits excellent energy storage performance over a wide work temperature up to 150 °C, with strong fatigue endurance and fast discharge speed. All these merits demonstrate the studied ceramic system is a potential candidate for high-temperature capacitors as energy storage devices.

Publication Date


  • 2020

Citation


  • Kong, X., Yang, L., Cheng, Z., & Zhang, S. (2020). Ultrahigh energy storage properties in (Sr0.7Bi0.2)TiO3-Bi(Mg0.5Zr0.5)O3 lead-free ceramics and potential for high-temperature capacitors. Materials, 13(1). doi:10.3390/ma13010180

Scopus Eid


  • 2-s2.0-85078934944

Volume


  • 13

Issue


  • 1