Skip to main content
placeholder image

Deciphering the Structural Evolution and Electronic Properties of Magnesium Clusters: An Aromatic Homonuclear Metal Mg17 Cluster.

Journal Article


Abstract


  • The structures and electronic properties of low-energy neutral and anionic Mgn (n = 3-20) clusters have been studied by utilizing a widely adopted CALYPSO structure searching method coupled with density functional theory calculations. A large number of low-energy isomers are optimized at the B3PW91 functional with the 6-311+G(d) basis set. The optimized geometries clearly indicate that a structural transition from hollow three-dimensional configurations to filled-cage-like structures occurs at n = 16 for both neutral and anionic clusters. Based on the anionic ground state structures, photoelectron spectra are simulated using time-dependent density functional theory (TD-DFT) and compared with experimental results. The good agreement validates that the current ground state structures, obtained from the symmetry-unconstrained searches, are true global minima. A detailed chemical bonding analysis distinctly indicates that the Mg17 cluster is the first neutral locally π-aromatic homonuclear all-metal cluster, which perfectly satisfies Hückel's well-known 4N + 2 rule.

Publication Date


  • 2016

Citation


  • Xia, X., Kuang, X., Lu, C., Jin, Y., Xing, X., Merino, G., & Hermann, A. (2016). Deciphering the Structural Evolution and Electronic Properties of Magnesium Clusters: An Aromatic Homonuclear Metal Mg17 Cluster.. The journal of physical chemistry. A, 120(40), 7947-7954. doi:10.1021/acs.jpca.6b07322

Web Of Science Accession Number


Start Page


  • 7947

End Page


  • 7954

Volume


  • 120

Issue


  • 40

Abstract


  • The structures and electronic properties of low-energy neutral and anionic Mgn (n = 3-20) clusters have been studied by utilizing a widely adopted CALYPSO structure searching method coupled with density functional theory calculations. A large number of low-energy isomers are optimized at the B3PW91 functional with the 6-311+G(d) basis set. The optimized geometries clearly indicate that a structural transition from hollow three-dimensional configurations to filled-cage-like structures occurs at n = 16 for both neutral and anionic clusters. Based on the anionic ground state structures, photoelectron spectra are simulated using time-dependent density functional theory (TD-DFT) and compared with experimental results. The good agreement validates that the current ground state structures, obtained from the symmetry-unconstrained searches, are true global minima. A detailed chemical bonding analysis distinctly indicates that the Mg17 cluster is the first neutral locally π-aromatic homonuclear all-metal cluster, which perfectly satisfies Hückel's well-known 4N + 2 rule.

Publication Date


  • 2016

Citation


  • Xia, X., Kuang, X., Lu, C., Jin, Y., Xing, X., Merino, G., & Hermann, A. (2016). Deciphering the Structural Evolution and Electronic Properties of Magnesium Clusters: An Aromatic Homonuclear Metal Mg17 Cluster.. The journal of physical chemistry. A, 120(40), 7947-7954. doi:10.1021/acs.jpca.6b07322

Web Of Science Accession Number


Start Page


  • 7947

End Page


  • 7954

Volume


  • 120

Issue


  • 40