Abstract
-
A thermo-elasto-hydrodynamic analysis of an undercut journal bearing is presented whereby elastic deflection is introduced in a certain area of the bearing surface. The hydrodynamic pressure is computed from the generalized Reynolds equation, which takes into account thermal effects on viscosity. This is accomplished by soluing the full energy equation for temperature. The elastic deflection is obtained from the elasticity equation. This study is then complemented with an elasto-hydrodynamic analysis of the full bearing. The controlled elastic deflection increases the bearing load carrying capacity and reduces friction. © 1995 by ASME.