Abstract

The formation of a dispersive shock wave in a colloidal medium, due to an initial jump in the light intensity, is studied. The compressibility of the colloidal particles is modeled using a series in the particle density, or packing fraction, where the virial coefficients depend on the particle interaction model. Both the theoretical hard disk and sphere repulsive models, and a model with temperature dependent compressibility, are considered. Experimental results for the second virial coefficient show that it is temperature dependent and that the particle interactions can be either repulsive or attractive. These effects are modeled using a powerlaw relationship. The governing equation is a focusing nonlinear SchrÃ¶dingertype equation with an implicit nonlinearity. The initial jump is resolved via a dispersive shock wave which forms before the onset of modulational instability. A semianalytical solution is developed for the onedimensional line bore case which predicts the amplitude of the solitary waves which form in the dispersive shock wave. The solitary wave amplitude versus jump height diagrams can exhibit three different kinds of behaviors. A unique solution, an Sshaped solution curve and multiple solution branches where the upper branch has separated from the lower branches. A bifurcation from the low to the high power branch can occur for many parameter choices as the amplitude of the initial jump increases. The effect of temperature on the evolution of the bore, the amplitude of the solitary waves and the bifurcation patterns are all discussed and the semianalytical solutions are found to be very accurate.