Skip to main content

Controllable synthesis of concave cubic gold core-shell nanoparticles for plasmon-enhanced photon harvesting

Journal Article


Download full-text (Open Access)

Abstract


  • Well-defined core-shell nanoparticles (NPs) containing concave cubic Au cores and TiO2 shells (CA@T) were synthesized in colloidal suspension. These CA@T NPs exhibit Localized Surface Plasmon Resonance (LSPR) absorption in the NIR region, which provides a unique property for utilizing the low energy range of the solar spectrum. In order to evaluate the plasmonic enhancement effect, a variety of CA@T NPs were incorporated into working electrodes of dye-sensitized solar cells (DSSCs). By adjusting the shell thickness of CA@T NPs, the plasmonic property can be tuned to achieve maximum photovoltaic improvement. Furthermore, the DSSC cells fabricated with the CA@T NPs exhibit a remarkably plasmonic assisted conversion efficiency enhancement (23.3%), compared to that (14.8%) of the reference cells assembled with spherical Au@TiO2 core-shell (SA@T) NPs under similar conditions. Various characterizations reveal that this performance improvement is attributed to the much stronger electromagnetic field generated at the hot spots of CA@T NPs, resulting in significantly higher light harvesting and more efficient charge separation. This study also provides new insights into maximizing the plasmonic enhancement, offering great potential in other applications including light-matter interaction, photocatalytic energy conversion and new-generation solar cells.

UOW Authors


  •   Yu, Hua (external author)
  •   Bai, Yang (external author)
  •   Butburee, Teera (external author)
  •   Wang, Lianzhou (external author)
  •   Amal, Rose (external author)
  •   Lu, Gao Qing (Max) (external author)
  •   Li, Zhen

Publication Date


  • 2015

Citation


  • Bai, Y., Butburee, T., Yu, H., Li, Z., Amal, R., Lu, G. & Wang, L. (2015). Controllable synthesis of concave cubic gold core-shell nanoparticles for plasmon-enhanced photon harvesting. Journal of Colloid and Interface Science, 449 246-251.

Scopus Eid


  • 2-s2.0-84939961642

Ro Full-text Url


  • http://ro.uow.edu.au/cgi/viewcontent.cgi?article=2353&context=aiimpapers

Ro Metadata Url


  • http://ro.uow.edu.au/aiimpapers/1352

Has Global Citation Frequency


Number Of Pages


  • 5

Start Page


  • 246

End Page


  • 251

Volume


  • 449

Abstract


  • Well-defined core-shell nanoparticles (NPs) containing concave cubic Au cores and TiO2 shells (CA@T) were synthesized in colloidal suspension. These CA@T NPs exhibit Localized Surface Plasmon Resonance (LSPR) absorption in the NIR region, which provides a unique property for utilizing the low energy range of the solar spectrum. In order to evaluate the plasmonic enhancement effect, a variety of CA@T NPs were incorporated into working electrodes of dye-sensitized solar cells (DSSCs). By adjusting the shell thickness of CA@T NPs, the plasmonic property can be tuned to achieve maximum photovoltaic improvement. Furthermore, the DSSC cells fabricated with the CA@T NPs exhibit a remarkably plasmonic assisted conversion efficiency enhancement (23.3%), compared to that (14.8%) of the reference cells assembled with spherical Au@TiO2 core-shell (SA@T) NPs under similar conditions. Various characterizations reveal that this performance improvement is attributed to the much stronger electromagnetic field generated at the hot spots of CA@T NPs, resulting in significantly higher light harvesting and more efficient charge separation. This study also provides new insights into maximizing the plasmonic enhancement, offering great potential in other applications including light-matter interaction, photocatalytic energy conversion and new-generation solar cells.

UOW Authors


  •   Yu, Hua (external author)
  •   Bai, Yang (external author)
  •   Butburee, Teera (external author)
  •   Wang, Lianzhou (external author)
  •   Amal, Rose (external author)
  •   Lu, Gao Qing (Max) (external author)
  •   Li, Zhen

Publication Date


  • 2015

Citation


  • Bai, Y., Butburee, T., Yu, H., Li, Z., Amal, R., Lu, G. & Wang, L. (2015). Controllable synthesis of concave cubic gold core-shell nanoparticles for plasmon-enhanced photon harvesting. Journal of Colloid and Interface Science, 449 246-251.

Scopus Eid


  • 2-s2.0-84939961642

Ro Full-text Url


  • http://ro.uow.edu.au/cgi/viewcontent.cgi?article=2353&context=aiimpapers

Ro Metadata Url


  • http://ro.uow.edu.au/aiimpapers/1352

Has Global Citation Frequency


Number Of Pages


  • 5

Start Page


  • 246

End Page


  • 251

Volume


  • 449