Skip to main content
placeholder image

Removal of pathogens by membrane bioreactors: a review of the mechanisms, influencing factors and reduction in chemical disinfectant dosing

Journal Article


Download full-text (Open Access)

Abstract


  • The continued depletion of fresh drinking water resources throughout the world has increased the need for a variety of water treatment and recycling strategies. Conventional wastewater treatment processes rely on extensive chemical post-disinfection to comply with the stringent microbiological safety for water reuse. When well designed and operated, membrane bioreactors (MBRs) can consistently achieve efficient removals of suspended solids, protozoa and coliform bacteria. Under optimal conditions, MBR systems can also significantly remove various viruses and phages. This paper provides an in-depth overview of the mechanisms and influencing factors of pathogen removal by MBR and highlights practical issues, such as reduced chemical disinfectant dosing requirements and associated economic and environmental benefits. Special attention has been paid to the aspects, such as membrane cleaning, membrane imperfections/breach and microbial regrowth, in the distribution system on the overall pathogen removal performance of MBR.

Authors


  •   Hai, Faisal I.
  •   Riley, Thomas M. (external author)
  •   Shawkat, Samia
  •   Magram, Saleh Faraj (external author)
  •   Yamamoto, Kazuo (external author)

Publication Date


  • 2014

Citation


  • Hai, F. I.., Riley, T. M., Shawkat, S., Magram, S. F. & Yamamoto, K. (2014). Removal of pathogens by membrane bioreactors: a review of the mechanisms, influencing factors and reduction in chemical disinfectant dosing. Water, 6 (12), 3603-3630.

Scopus Eid


  • 2-s2.0-84920923933

Ro Full-text Url


  • http://ro.uow.edu.au/cgi/viewcontent.cgi?article=4110&context=eispapers

Ro Metadata Url


  • http://ro.uow.edu.au/eispapers/3094

Has Global Citation Frequency


Number Of Pages


  • 27

Start Page


  • 3603

End Page


  • 3630

Volume


  • 6

Issue


  • 12

Place Of Publication


  • Switzerland

Abstract


  • The continued depletion of fresh drinking water resources throughout the world has increased the need for a variety of water treatment and recycling strategies. Conventional wastewater treatment processes rely on extensive chemical post-disinfection to comply with the stringent microbiological safety for water reuse. When well designed and operated, membrane bioreactors (MBRs) can consistently achieve efficient removals of suspended solids, protozoa and coliform bacteria. Under optimal conditions, MBR systems can also significantly remove various viruses and phages. This paper provides an in-depth overview of the mechanisms and influencing factors of pathogen removal by MBR and highlights practical issues, such as reduced chemical disinfectant dosing requirements and associated economic and environmental benefits. Special attention has been paid to the aspects, such as membrane cleaning, membrane imperfections/breach and microbial regrowth, in the distribution system on the overall pathogen removal performance of MBR.

Authors


  •   Hai, Faisal I.
  •   Riley, Thomas M. (external author)
  •   Shawkat, Samia
  •   Magram, Saleh Faraj (external author)
  •   Yamamoto, Kazuo (external author)

Publication Date


  • 2014

Citation


  • Hai, F. I.., Riley, T. M., Shawkat, S., Magram, S. F. & Yamamoto, K. (2014). Removal of pathogens by membrane bioreactors: a review of the mechanisms, influencing factors and reduction in chemical disinfectant dosing. Water, 6 (12), 3603-3630.

Scopus Eid


  • 2-s2.0-84920923933

Ro Full-text Url


  • http://ro.uow.edu.au/cgi/viewcontent.cgi?article=4110&context=eispapers

Ro Metadata Url


  • http://ro.uow.edu.au/eispapers/3094

Has Global Citation Frequency


Number Of Pages


  • 27

Start Page


  • 3603

End Page


  • 3630

Volume


  • 6

Issue


  • 12

Place Of Publication


  • Switzerland