Advancement in liquid exfoliation of graphite through simultaneously oxidizing and ultrasonicating

Journal Article


Abstract


  • Layered crystals, once exfoliated in liquids, create nanosheets with large surface area and likely generate electron band gaps. The current liquid exfoliation of graphite is performed by either oxidation, ultrasonication or the oxidation followed by ultrasonication; these methods are respectable but have limitations in general: the oxidation actually produces graphene oxide while the sonication is timeconsuming with a low yield. In this paper we report a highly effective yet simple approach for the fabrication of high-quality graphene; the approach consists of simultaneously oxidizing and ultrasonicating graphite for merely 60 min, followed by washing and filtration. Exfoliation was markedly promoted by the simultaneous treatment, where 80% of the sheets comprise single or few layers with lateral dimensions ranging 50 nm to over 100 nm; their carbon to oxygen ratio is at 8.85; the ratio of Raman D- to G-band intensity is as low as 0.211; and the sheets can be stably dispersed in acetone for at least 48 hours and they have an electrical conductivity over 600 S cm-1. A thin graphene film made by casting exhibited a sheet resistance of ∼1000 Ωsquare-1 with 80% transparency at 550 nm.

Authors


  •   Shi, Ge (external author)
  •   Michelmore, Andrew (external author)
  •   Jin, Jian Xun (external author)
  •   Li, Luhua (external author)
  •   Chen, Ying I. (external author)
  •   Wang, Lianzhou (external author)
  •   Yu, Hua (external author)
  •   Wallace, Gordon G.
  •   Gambhir, Sanjeev
  •   Zhu, Shenmin (external author)
  •   Hojati-Talemi, Pejman (external author)
  •   Ma, Jun (external author)

Publication Date


  • 2014

Citation


  • Shi, G., Michelmore, A., Jin, J., Li, L., Chen, Y., Wang, L., Yu, H., Wallace, G., Gambhir, S., Zhu, S., Hojati-Talemi, P. & Ma, J. (2014). Advancement in liquid exfoliation of graphite through simultaneously oxidizing and ultrasonicating. Journal of Materials Chemistry A, 2 (47), 20382-20392.

Scopus Eid


  • 2-s2.0-84910141275

Ro Metadata Url


  • http://ro.uow.edu.au/aiimpapers/1310

Has Global Citation Frequency


Number Of Pages


  • 10

Start Page


  • 20382

End Page


  • 20392

Volume


  • 2

Issue


  • 47

Place Of Publication


  • United Kingdom

Abstract


  • Layered crystals, once exfoliated in liquids, create nanosheets with large surface area and likely generate electron band gaps. The current liquid exfoliation of graphite is performed by either oxidation, ultrasonication or the oxidation followed by ultrasonication; these methods are respectable but have limitations in general: the oxidation actually produces graphene oxide while the sonication is timeconsuming with a low yield. In this paper we report a highly effective yet simple approach for the fabrication of high-quality graphene; the approach consists of simultaneously oxidizing and ultrasonicating graphite for merely 60 min, followed by washing and filtration. Exfoliation was markedly promoted by the simultaneous treatment, where 80% of the sheets comprise single or few layers with lateral dimensions ranging 50 nm to over 100 nm; their carbon to oxygen ratio is at 8.85; the ratio of Raman D- to G-band intensity is as low as 0.211; and the sheets can be stably dispersed in acetone for at least 48 hours and they have an electrical conductivity over 600 S cm-1. A thin graphene film made by casting exhibited a sheet resistance of ∼1000 Ωsquare-1 with 80% transparency at 550 nm.

Authors


  •   Shi, Ge (external author)
  •   Michelmore, Andrew (external author)
  •   Jin, Jian Xun (external author)
  •   Li, Luhua (external author)
  •   Chen, Ying I. (external author)
  •   Wang, Lianzhou (external author)
  •   Yu, Hua (external author)
  •   Wallace, Gordon G.
  •   Gambhir, Sanjeev
  •   Zhu, Shenmin (external author)
  •   Hojati-Talemi, Pejman (external author)
  •   Ma, Jun (external author)

Publication Date


  • 2014

Citation


  • Shi, G., Michelmore, A., Jin, J., Li, L., Chen, Y., Wang, L., Yu, H., Wallace, G., Gambhir, S., Zhu, S., Hojati-Talemi, P. & Ma, J. (2014). Advancement in liquid exfoliation of graphite through simultaneously oxidizing and ultrasonicating. Journal of Materials Chemistry A, 2 (47), 20382-20392.

Scopus Eid


  • 2-s2.0-84910141275

Ro Metadata Url


  • http://ro.uow.edu.au/aiimpapers/1310

Has Global Citation Frequency


Number Of Pages


  • 10

Start Page


  • 20382

End Page


  • 20392

Volume


  • 2

Issue


  • 47

Place Of Publication


  • United Kingdom