Skip to main content
placeholder image

Measurement of residual stresses in titanium aerospace components formed via additive manufacturing

Journal Article


Abstract


  • In the present study gas tungsten arc welding (GTAW) with automated wire addition was used to additively manufacture (AM) a representative thin-walled aerospace component from Ti- 6Al-4V in a layer-wise manner. Residual strains, and hence stresses, were analysed quantitatively using neutron diffraction techniques on the KOWARI strain scanner at the OPAL research facility operated by the Australian Nuclear Science and Technology Organisation (ANSTO). Results showed that residual strains within such an AM sample could be measured with relative ease using the neutron diffraction method. Residual stress levels were found to be greatest in the longitudinal direction and concentrated at the interface between the base plate and deposited wall. Difficulties in measurement of lattice strains in some discrete locations were ascribed to the formation of the formation of localised texturing where α-Ti laths form in aligned colonies within prior β-Ti grain boundaries upon cooling. Observations of microstructure reveal 'basket-weave' morphology typical of welds in Ti-6Al-4V. Microhardness measurements show a drop in hardness in the top region of the deposit, indicating a dependence on thermal cycling from sequential welds. © (2014) Trans Tech Publications, Switzerland.

Publication Date


  • 2014

Citation


  • Hoye, N. P., Li, H., Cuiuri, D. & Paradowska, A. (2014). Measurement of residual stresses in titanium aerospace components formed via additive manufacturing. Materials Science Forum, 777 124-129.

Scopus Eid


  • 2-s2.0-84896870155

Ro Metadata Url


  • http://ro.uow.edu.au/eispapers/2115

Has Global Citation Frequency


Number Of Pages


  • 5

Start Page


  • 124

End Page


  • 129

Volume


  • 777

Place Of Publication


  • Switzerland

Abstract


  • In the present study gas tungsten arc welding (GTAW) with automated wire addition was used to additively manufacture (AM) a representative thin-walled aerospace component from Ti- 6Al-4V in a layer-wise manner. Residual strains, and hence stresses, were analysed quantitatively using neutron diffraction techniques on the KOWARI strain scanner at the OPAL research facility operated by the Australian Nuclear Science and Technology Organisation (ANSTO). Results showed that residual strains within such an AM sample could be measured with relative ease using the neutron diffraction method. Residual stress levels were found to be greatest in the longitudinal direction and concentrated at the interface between the base plate and deposited wall. Difficulties in measurement of lattice strains in some discrete locations were ascribed to the formation of the formation of localised texturing where α-Ti laths form in aligned colonies within prior β-Ti grain boundaries upon cooling. Observations of microstructure reveal 'basket-weave' morphology typical of welds in Ti-6Al-4V. Microhardness measurements show a drop in hardness in the top region of the deposit, indicating a dependence on thermal cycling from sequential welds. © (2014) Trans Tech Publications, Switzerland.

Publication Date


  • 2014

Citation


  • Hoye, N. P., Li, H., Cuiuri, D. & Paradowska, A. (2014). Measurement of residual stresses in titanium aerospace components formed via additive manufacturing. Materials Science Forum, 777 124-129.

Scopus Eid


  • 2-s2.0-84896870155

Ro Metadata Url


  • http://ro.uow.edu.au/eispapers/2115

Has Global Citation Frequency


Number Of Pages


  • 5

Start Page


  • 124

End Page


  • 129

Volume


  • 777

Place Of Publication


  • Switzerland