Skip to main content

Exact and approximate traveling waves of reaction-diffusion systems via a variational approach

Journal Article


Abstract


  • Reaction-diffusion systems arise in many different areas of the physical and biological sciences, and traveling wave solutions play special roles in some of these applications. In this paper, we develop a variational formulation of the existence problem for the traveling wave solution. Our main objective is to use this variational formulation to obtain exact and approximate traveling wave solutions with error estimates. As examples, we look at the Fisher equation, the Nagumo equation, and an equation with a fourth-degree nonlinearity. Also, we apply the method to the multi-component Lotka–Volterra competition-diffusion system.

Publication Date


  • 2011

Citation


  • Rodrigo, M. R. & Miura, R. M. (2011). Exact and approximate traveling waves of reaction-diffusion systems via a variational approach. Analysis and Applications, 9 (2), 187-199.

Scopus Eid


  • 2-s2.0-79959709919

Ro Metadata Url


  • http://ro.uow.edu.au/eispapers/1860

Number Of Pages


  • 12

Start Page


  • 187

End Page


  • 199

Volume


  • 9

Issue


  • 2

Abstract


  • Reaction-diffusion systems arise in many different areas of the physical and biological sciences, and traveling wave solutions play special roles in some of these applications. In this paper, we develop a variational formulation of the existence problem for the traveling wave solution. Our main objective is to use this variational formulation to obtain exact and approximate traveling wave solutions with error estimates. As examples, we look at the Fisher equation, the Nagumo equation, and an equation with a fourth-degree nonlinearity. Also, we apply the method to the multi-component Lotka–Volterra competition-diffusion system.

Publication Date


  • 2011

Citation


  • Rodrigo, M. R. & Miura, R. M. (2011). Exact and approximate traveling waves of reaction-diffusion systems via a variational approach. Analysis and Applications, 9 (2), 187-199.

Scopus Eid


  • 2-s2.0-79959709919

Ro Metadata Url


  • http://ro.uow.edu.au/eispapers/1860

Number Of Pages


  • 12

Start Page


  • 187

End Page


  • 199

Volume


  • 9

Issue


  • 2