Skip to main content
placeholder image

Inclusion reactivity: morphology and composition changes of spinel (MgAl2O4) in steel

Conference Paper


Download full-text (Open Access)

Abstract


  • Due to an ever increasing demand for cleaner, high quality steels, there is an increasing push for steelmakers to lower the non-metallic inclusion contents of the steel they produce. Understanding inclusion reactivity in steel is key in producing high quality steels at high production rates. Our current knowledge in controlling and predicting inclusion development during liquid steel processing is limited. In this study, spinel (MgAl2O4) inclusions of close to stoichiometric MgO.Al2O3 and known size distribution where added to the liquid steel bath prior to assessing their reactivity. The pO2 of the gas phase was controlled to 10-13 atm throughout the experiment. The inclusions were then tracked for changes in size, morphology and composition with time in an aluminium killed steel at 1600°C. It was found that the inclusions were evenly distributed through the melt. There was little change in the average size of the spinel inclusions during the reaction. However, the composition of the inclusions did change. It was found that the Mg:Al mass% ratio of the inclusions changed immediately from ~0.5 to 0.08. Other inclusions found in the melt were alumina and complex sulphide inclusions. Of these it was found that the proportion of the alumina inclusions increased with time.

UOW Authors


  •   Dogan, Neslihan (external author)
  •   Longbottom, Raymond
  •   Reid, Mark H.
  •   Chapman, Michael W. (external author)
  •   Wilson, Paton (external author)
  •   Moore, Les (external author)
  •   Monaghan, Brian

Publication Date


  • 2013

Citation


  • Dogan, N., Longbottom, R. J., Reid, M. H., Chapman, M. W., Wilson, P., Moore, L. & Monaghan, B. J. (2013). Inclusion reactivity: morphology and composition changes of spinel (MgAl2O4) in steel. Chemeca 2013: Challenging Tomorrow (pp. 147-153). Australia: Institution of Engineers Australia.

Ro Full-text Url


  • http://ro.uow.edu.au/cgi/viewcontent.cgi?article=3081&context=eispapers

Ro Metadata Url


  • http://ro.uow.edu.au/eispapers/2072

Start Page


  • 147

End Page


  • 153

Place Of Publication


  • http://search.informit.com.au/documentSummary;dn=874317465897733;res=IELENG

Abstract


  • Due to an ever increasing demand for cleaner, high quality steels, there is an increasing push for steelmakers to lower the non-metallic inclusion contents of the steel they produce. Understanding inclusion reactivity in steel is key in producing high quality steels at high production rates. Our current knowledge in controlling and predicting inclusion development during liquid steel processing is limited. In this study, spinel (MgAl2O4) inclusions of close to stoichiometric MgO.Al2O3 and known size distribution where added to the liquid steel bath prior to assessing their reactivity. The pO2 of the gas phase was controlled to 10-13 atm throughout the experiment. The inclusions were then tracked for changes in size, morphology and composition with time in an aluminium killed steel at 1600°C. It was found that the inclusions were evenly distributed through the melt. There was little change in the average size of the spinel inclusions during the reaction. However, the composition of the inclusions did change. It was found that the Mg:Al mass% ratio of the inclusions changed immediately from ~0.5 to 0.08. Other inclusions found in the melt were alumina and complex sulphide inclusions. Of these it was found that the proportion of the alumina inclusions increased with time.

UOW Authors


  •   Dogan, Neslihan (external author)
  •   Longbottom, Raymond
  •   Reid, Mark H.
  •   Chapman, Michael W. (external author)
  •   Wilson, Paton (external author)
  •   Moore, Les (external author)
  •   Monaghan, Brian

Publication Date


  • 2013

Citation


  • Dogan, N., Longbottom, R. J., Reid, M. H., Chapman, M. W., Wilson, P., Moore, L. & Monaghan, B. J. (2013). Inclusion reactivity: morphology and composition changes of spinel (MgAl2O4) in steel. Chemeca 2013: Challenging Tomorrow (pp. 147-153). Australia: Institution of Engineers Australia.

Ro Full-text Url


  • http://ro.uow.edu.au/cgi/viewcontent.cgi?article=3081&context=eispapers

Ro Metadata Url


  • http://ro.uow.edu.au/eispapers/2072

Start Page


  • 147

End Page


  • 153

Place Of Publication


  • http://search.informit.com.au/documentSummary;dn=874317465897733;res=IELENG