Skip to main content
placeholder image

A theoretical investigation of a solar photovoltaic thermal system integrated with phase change materials

Conference Paper


Download full-text (Open Access)

Abstract


  • In this paper we present a theoretical investigation of an air based solar photovoltaic thermal (PVT) system integrated with phase

    change materials. The advantage of the air based PVT system is that the air can be directly used for space heating or cooling. At

    first we present an air based PVT system model and analyze the effect of major parameters on the system performance. We then

    integrate this PVT system model with a phase change material (PCM) energy storage system model and analyze the system

    performance.

    We found that solar irradiation increased thermal efficiency initially before reaching a plateau. However, electrical efficiency

    increases almost linearly with the solar irradiation. Increasing the air flow rate through the air channels, both the thermal and

    electrical efficiencies increase.

    Our results also showed that the channel depth has limited effect on the PVT system, only up to certain depth. The wind speed

    showed significant effect. As wind speed increases, the thermal efficiency decreases. This is due to the fact that with higher wind

    speed, much of the heat from the PVT surface (which is unglazed) is lost to the environment. This cools the PV plate and

    consequently increases its electrical efficiency.

    Our initial results also suggest that air based PVT system can supply considerable part of required space heating energy for a

    typical household. Incorporating PCM into PVT system enables the system to supplement heating, ventilation and air-conditioning

    energy demand even when the sun light or night cooling is not available.

Authors


  •   Sohel, Mohammed I. (external author)
  •   Ma, Zhenjun
  •   Cooper, Paul
  •   Adams, Jamie (external author)
  •   Scott, Robert (external author)

Publication Date


  • 2013

Citation


  • Sohel, M. Imroz., Ma, Z., Cooper, P., Adams, J. & Scott, R. (2013). A theoretical investigation of a solar photovoltaic thermal system integrated with phase change materials. 12th International Conference on Sustainable Energy technologies (SET-2013) (pp. 1265-1272). Hong Kong, China: Hong Kong Polytechnic University.

Ro Full-text Url


  • http://ro.uow.edu.au/cgi/viewcontent.cgi?article=2632&context=eispapers

Ro Metadata Url


  • http://ro.uow.edu.au/eispapers/1623

Start Page


  • 1265

End Page


  • 1272

Abstract


  • In this paper we present a theoretical investigation of an air based solar photovoltaic thermal (PVT) system integrated with phase

    change materials. The advantage of the air based PVT system is that the air can be directly used for space heating or cooling. At

    first we present an air based PVT system model and analyze the effect of major parameters on the system performance. We then

    integrate this PVT system model with a phase change material (PCM) energy storage system model and analyze the system

    performance.

    We found that solar irradiation increased thermal efficiency initially before reaching a plateau. However, electrical efficiency

    increases almost linearly with the solar irradiation. Increasing the air flow rate through the air channels, both the thermal and

    electrical efficiencies increase.

    Our results also showed that the channel depth has limited effect on the PVT system, only up to certain depth. The wind speed

    showed significant effect. As wind speed increases, the thermal efficiency decreases. This is due to the fact that with higher wind

    speed, much of the heat from the PVT surface (which is unglazed) is lost to the environment. This cools the PV plate and

    consequently increases its electrical efficiency.

    Our initial results also suggest that air based PVT system can supply considerable part of required space heating energy for a

    typical household. Incorporating PCM into PVT system enables the system to supplement heating, ventilation and air-conditioning

    energy demand even when the sun light or night cooling is not available.

Authors


  •   Sohel, Mohammed I. (external author)
  •   Ma, Zhenjun
  •   Cooper, Paul
  •   Adams, Jamie (external author)
  •   Scott, Robert (external author)

Publication Date


  • 2013

Citation


  • Sohel, M. Imroz., Ma, Z., Cooper, P., Adams, J. & Scott, R. (2013). A theoretical investigation of a solar photovoltaic thermal system integrated with phase change materials. 12th International Conference on Sustainable Energy technologies (SET-2013) (pp. 1265-1272). Hong Kong, China: Hong Kong Polytechnic University.

Ro Full-text Url


  • http://ro.uow.edu.au/cgi/viewcontent.cgi?article=2632&context=eispapers

Ro Metadata Url


  • http://ro.uow.edu.au/eispapers/1623

Start Page


  • 1265

End Page


  • 1272