Skip to main content
placeholder image

Twisted cyclic cohomology and modular fredholm modules

Journal Article


Download full-text (Open Access)

Abstract


  • Connes and Cuntz showed in [Comm. Math. Phys. 114 (1988), 515-526] that suitable cyclic cocycles can be represented as Chern characters of finitely summable semifinite Fredholm modules. We show an analogous result in twisted cyclic cohomology using Chern characters of modular Fredholm modules. We present examples of modular Fredholm modules arising from Podles sphereś and from SUq (2).

Authors


  •   Rennie, Adam C.
  •   Sitarz, Andrzej W. (external author)
  •   Yamashita, Makoto (external author)

Publication Date


  • 2013

Citation


  • Rennie, A., Sitarz, A. & Yamashita, M. (2013). Twisted cyclic cohomology and modular fredholm modules. Symmetry, Integrability and Geometry: Methods and Applications, 9 1-15.

Scopus Eid


  • 2-s2.0-84881039040

Ro Full-text Url


  • http://ro.uow.edu.au/cgi/viewcontent.cgi?article=2280&context=eispapers

Ro Metadata Url


  • http://ro.uow.edu.au/eispapers/1271

Number Of Pages


  • 14

Start Page


  • 1

End Page


  • 15

Volume


  • 9

Abstract


  • Connes and Cuntz showed in [Comm. Math. Phys. 114 (1988), 515-526] that suitable cyclic cocycles can be represented as Chern characters of finitely summable semifinite Fredholm modules. We show an analogous result in twisted cyclic cohomology using Chern characters of modular Fredholm modules. We present examples of modular Fredholm modules arising from Podles sphereś and from SUq (2).

Authors


  •   Rennie, Adam C.
  •   Sitarz, Andrzej W. (external author)
  •   Yamashita, Makoto (external author)

Publication Date


  • 2013

Citation


  • Rennie, A., Sitarz, A. & Yamashita, M. (2013). Twisted cyclic cohomology and modular fredholm modules. Symmetry, Integrability and Geometry: Methods and Applications, 9 1-15.

Scopus Eid


  • 2-s2.0-84881039040

Ro Full-text Url


  • http://ro.uow.edu.au/cgi/viewcontent.cgi?article=2280&context=eispapers

Ro Metadata Url


  • http://ro.uow.edu.au/eispapers/1271

Number Of Pages


  • 14

Start Page


  • 1

End Page


  • 15

Volume


  • 9