Skip to main content
placeholder image

A residue formula for the fundamental Hochschild 3-cocycle for SUq(2)

Journal Article


Download full-text (Open Access)

Abstract


  • An analogue of a spectral triple over SUq(2) is constructed for which the usual assumption

    of bounded commutators with the Dirac operator fails. An analytic expression analogous to that

    for the Hochschild class of the Chern character for spectral triples yields a non-trivial twisted

    Hochschild 3-cocycle. The problems arising from the unbounded commutators are overcome by

    defining a residue functional using projections to cut down the Hilbert space.

Authors


  •   Krahmer, Ulrich (external author)
  •   Rennie, Adam C.
  •   Senior, Roger (external author)

Publication Date


  • 2012

Citation


  • Krahmer, U., Rennie, A. & Senior, R. (2012). A residue formula for the fundamental Hochschild 3-cocycle for SUq(2). Journal of Lie Theory, 22 (2), 557-585.

Scopus Eid


  • 2-s2.0-84856905428

Ro Full-text Url


  • http://ro.uow.edu.au/cgi/viewcontent.cgi?article=3951&context=eispapers&unstamped=1

Ro Metadata Url


  • http://ro.uow.edu.au/eispapers/2942

Number Of Pages


  • 28

Start Page


  • 557

End Page


  • 585

Volume


  • 22

Issue


  • 2

Abstract


  • An analogue of a spectral triple over SUq(2) is constructed for which the usual assumption

    of bounded commutators with the Dirac operator fails. An analytic expression analogous to that

    for the Hochschild class of the Chern character for spectral triples yields a non-trivial twisted

    Hochschild 3-cocycle. The problems arising from the unbounded commutators are overcome by

    defining a residue functional using projections to cut down the Hilbert space.

Authors


  •   Krahmer, Ulrich (external author)
  •   Rennie, Adam C.
  •   Senior, Roger (external author)

Publication Date


  • 2012

Citation


  • Krahmer, U., Rennie, A. & Senior, R. (2012). A residue formula for the fundamental Hochschild 3-cocycle for SUq(2). Journal of Lie Theory, 22 (2), 557-585.

Scopus Eid


  • 2-s2.0-84856905428

Ro Full-text Url


  • http://ro.uow.edu.au/cgi/viewcontent.cgi?article=3951&context=eispapers&unstamped=1

Ro Metadata Url


  • http://ro.uow.edu.au/eispapers/2942

Number Of Pages


  • 28

Start Page


  • 557

End Page


  • 585

Volume


  • 22

Issue


  • 2