Skip to main content
placeholder image

Defect dynamics in polycrystalline zirconium alloy probed in situ by primary extinction of neutron diffraction

Journal Article


Download full-text (Open Access)

Abstract


  • After α + β-zirconium has fully transformed into β-phase upon heating, the intensities of all β-Zr Bragg reflections decrease simultaneously as a function of time. It is shown that this effect represents a transition from the kinematic to the dynamic theory of diffraction due to the ever increasing crystal perfection driven by thermal recovery of the system. The best fitting coherent crystallite size of 30 μm and other microstructural features are verified by in situ laser scanning confocal microscopy. This effect of primary extinction in neutron diffraction has been employed to further investigate the crystal perfection kinetics. Upon further heating, crystal recovery is identified as a process of dislocation annihilation, suffering from lattice friction. Upon cooling, precipitating α-Zr induces strain into the perfect β-crystallites, re-establishing the kinematic diffraction intensities. An Avrami analysis leads to the estimations of nucleation time, consumption of nucleation sites and lower-dimensional growth. Such technique bears great value for further investigation on all metal systems annealed close to the melting temperature. © 2013 American Institute of Physics.

Authors


  •   Kabra, Saurabh (external author)
  •   Yan, Kun (external author)
  •   Carr, David G. (external author)
  •   Harrison, Robert P. (external author)
  •   Dippenaar, Rian J.
  •   Reid, Mark H.
  •   Liss, Klaus-Dieter

Publication Date


  • 2013

Citation


  • Kabra, S., Yan, K., Carr, D. G., Harrison, R. P., Dippenaar, R. J., Reid, M. H. & Liss, K. (2013). Defect dynamics in polycrystalline zirconium alloy probed in situ by primary extinction of neutron diffraction. Journal of Applied Physics, 113 (6), 063513-1-063513-8.

Scopus Eid


  • 2-s2.0-84874315526

Ro Full-text Url


  • http://ro.uow.edu.au/cgi/viewcontent.cgi?article=2288&context=eispapers

Ro Metadata Url


  • http://ro.uow.edu.au/eispapers/1279

Has Global Citation Frequency


Start Page


  • 063513-1

End Page


  • 063513-8

Volume


  • 113

Issue


  • 6

Place Of Publication


  • United States

Abstract


  • After α + β-zirconium has fully transformed into β-phase upon heating, the intensities of all β-Zr Bragg reflections decrease simultaneously as a function of time. It is shown that this effect represents a transition from the kinematic to the dynamic theory of diffraction due to the ever increasing crystal perfection driven by thermal recovery of the system. The best fitting coherent crystallite size of 30 μm and other microstructural features are verified by in situ laser scanning confocal microscopy. This effect of primary extinction in neutron diffraction has been employed to further investigate the crystal perfection kinetics. Upon further heating, crystal recovery is identified as a process of dislocation annihilation, suffering from lattice friction. Upon cooling, precipitating α-Zr induces strain into the perfect β-crystallites, re-establishing the kinematic diffraction intensities. An Avrami analysis leads to the estimations of nucleation time, consumption of nucleation sites and lower-dimensional growth. Such technique bears great value for further investigation on all metal systems annealed close to the melting temperature. © 2013 American Institute of Physics.

Authors


  •   Kabra, Saurabh (external author)
  •   Yan, Kun (external author)
  •   Carr, David G. (external author)
  •   Harrison, Robert P. (external author)
  •   Dippenaar, Rian J.
  •   Reid, Mark H.
  •   Liss, Klaus-Dieter

Publication Date


  • 2013

Citation


  • Kabra, S., Yan, K., Carr, D. G., Harrison, R. P., Dippenaar, R. J., Reid, M. H. & Liss, K. (2013). Defect dynamics in polycrystalline zirconium alloy probed in situ by primary extinction of neutron diffraction. Journal of Applied Physics, 113 (6), 063513-1-063513-8.

Scopus Eid


  • 2-s2.0-84874315526

Ro Full-text Url


  • http://ro.uow.edu.au/cgi/viewcontent.cgi?article=2288&context=eispapers

Ro Metadata Url


  • http://ro.uow.edu.au/eispapers/1279

Has Global Citation Frequency


Start Page


  • 063513-1

End Page


  • 063513-8

Volume


  • 113

Issue


  • 6

Place Of Publication


  • United States