Skip to main content
placeholder image

Some new constructions of orthogonal designs

Journal Article


Download full-text (Open Access)

Abstract


  • In this paper we construct $OD(4pq^r(q+1)$; $pq^r$, $pq^r$, $pq^r$,

    $pq^r$, $pq^{r+1}$, $pq^{r+1}$, $pq^{r+1}$, $pq^{r+1})$ for each

    core order $q \equiv 3 {\rm (mod~4)}$, $r\ge 0$ or $q=1$, $p$ odd,

    $p \le 21$ and $p \in \{ 25$, $49 \}$, and $COD(2q^r(q+1)$; $q^r$,

    $q^r$, $q^{r+1}$, $q^{r+1})$ for any prime power $q \equiv 1 {\rm

    (mod~4)}$ (including $q=1$), $r \ge 0$.

Publication Date


  • 2013

Citation


  • Xia, T., Seberry, J., Xia, M. & Zhang, S. (2013). Some new constructions of orthogonal designs. Australasian Journal of Combinatorics, 55 121-130.

Scopus Eid


  • 2-s2.0-84875152740

Ro Full-text Url


  • http://ro.uow.edu.au/cgi/viewcontent.cgi?article=3267&context=eispapers

Ro Metadata Url


  • http://ro.uow.edu.au/eispapers/2258

Number Of Pages


  • 9

Start Page


  • 121

End Page


  • 130

Volume


  • 55

Place Of Publication


  • http://ajc.maths.uq.edu.au/?page=get_volumes&volume=55

Abstract


  • In this paper we construct $OD(4pq^r(q+1)$; $pq^r$, $pq^r$, $pq^r$,

    $pq^r$, $pq^{r+1}$, $pq^{r+1}$, $pq^{r+1}$, $pq^{r+1})$ for each

    core order $q \equiv 3 {\rm (mod~4)}$, $r\ge 0$ or $q=1$, $p$ odd,

    $p \le 21$ and $p \in \{ 25$, $49 \}$, and $COD(2q^r(q+1)$; $q^r$,

    $q^r$, $q^{r+1}$, $q^{r+1})$ for any prime power $q \equiv 1 {\rm

    (mod~4)}$ (including $q=1$), $r \ge 0$.

Publication Date


  • 2013

Citation


  • Xia, T., Seberry, J., Xia, M. & Zhang, S. (2013). Some new constructions of orthogonal designs. Australasian Journal of Combinatorics, 55 121-130.

Scopus Eid


  • 2-s2.0-84875152740

Ro Full-text Url


  • http://ro.uow.edu.au/cgi/viewcontent.cgi?article=3267&context=eispapers

Ro Metadata Url


  • http://ro.uow.edu.au/eispapers/2258

Number Of Pages


  • 9

Start Page


  • 121

End Page


  • 130

Volume


  • 55

Place Of Publication


  • http://ajc.maths.uq.edu.au/?page=get_volumes&volume=55