Skip to main content

Spatial statistical data fusion for remote sensing applications

Journal Article


Abstract


  • Aerosols are tiny solid or liquid particles suspended in the atmosphere; examples of aerosols include windblown dust, sea salts, volcanic ash, smoke from wildfires, and pollution from factories. The global distribution of aerosols is a topic of great interest in climate studies since aerosols can either cool or warm the atmosphere depending on their location, type, and interaction with clouds. Aerosol concentrations are important input components of global climate models, and it is crucial to accurately estimate aerosol concentrations from remote sensing instruments so as to minimize errors "downstream" in climate models. Currently, space-based observations of aerosols are available from two remote sensing instruments on board NASA's Terra spacecraft: the Mu Wangle Imaging SpectroRadiometer (MISR), and the MODerate-resolution Imaging Spectrometer (MODIS). These two instruments have complementary coverage, spatial support, and retrieval characteristics, making it advantageous to combine information from both sources to make optimal inferences about global aerosol distributions.

Authors


  •   Nguyen, Hai (external author)
  •   Cressie, Noel A.
  •   Braverman, Amy (external author)

Publication Date


  • 2012

Citation


  • Nguyen, H., Cressie, N. A. & Braverman, A. (2012). Spatial statistical data fusion for remote sensing applications. Journal of the American Statistical Association, 107 (499), 1004-1018.

Scopus Eid


  • 2-s2.0-84870690375

Ro Metadata Url


  • http://ro.uow.edu.au/infopapers/2746

Number Of Pages


  • 14

Start Page


  • 1004

End Page


  • 1018

Volume


  • 107

Issue


  • 499

Abstract


  • Aerosols are tiny solid or liquid particles suspended in the atmosphere; examples of aerosols include windblown dust, sea salts, volcanic ash, smoke from wildfires, and pollution from factories. The global distribution of aerosols is a topic of great interest in climate studies since aerosols can either cool or warm the atmosphere depending on their location, type, and interaction with clouds. Aerosol concentrations are important input components of global climate models, and it is crucial to accurately estimate aerosol concentrations from remote sensing instruments so as to minimize errors "downstream" in climate models. Currently, space-based observations of aerosols are available from two remote sensing instruments on board NASA's Terra spacecraft: the Mu Wangle Imaging SpectroRadiometer (MISR), and the MODerate-resolution Imaging Spectrometer (MODIS). These two instruments have complementary coverage, spatial support, and retrieval characteristics, making it advantageous to combine information from both sources to make optimal inferences about global aerosol distributions.

Authors


  •   Nguyen, Hai (external author)
  •   Cressie, Noel A.
  •   Braverman, Amy (external author)

Publication Date


  • 2012

Citation


  • Nguyen, H., Cressie, N. A. & Braverman, A. (2012). Spatial statistical data fusion for remote sensing applications. Journal of the American Statistical Association, 107 (499), 1004-1018.

Scopus Eid


  • 2-s2.0-84870690375

Ro Metadata Url


  • http://ro.uow.edu.au/infopapers/2746

Number Of Pages


  • 14

Start Page


  • 1004

End Page


  • 1018

Volume


  • 107

Issue


  • 499