Skip to main content
placeholder image

Adaptive autoregressive logarithmic search for 3D human tracking

Conference Paper


Abstract


  • Human tracking is an important vision task in video surveillance and perceptual human-computer interfaces. This paper presents a novel algorithm for region-based human tracking using color and depth features. We propose an adaptive autoregressive logarithmic search (ARLS) to estimate the target position, and use depth information to further reduce the false alarm rate. The new ARLS algorithm is evaluated on a color and depth (RGBD) video dataset acquired with the Kinect sensor. The dataset contains various real-world scenarios with illumination and speed variations, and partial occlusion. The experimental results show that the ARLS algorithm is able to handle difficult tracking scenarios; it achieves a tracking accuracy of 91.26% on the test dataset. The proposed algorithm is compared with two tracking algorithms, namely the particle filtering and a modified logarithmic search algorithm. © 2012 IEEE.

Publication Date


  • 2012

Citation


  • P. Li, A. Bouzerdoum & S. Phung, "Adaptive autoregressive logarithmic search for 3D human tracking," in AVSS 2012: 9th IEEE International Conference on Advanced Video and Signal-Based Surveillance, 2012, pp. 343-348.

Scopus Eid


  • 2-s2.0-84868248020

Ro Metadata Url


  • http://ro.uow.edu.au/infopapers/2319

Has Global Citation Frequency


Start Page


  • 343

End Page


  • 348

Place Of Publication


  • USA

Abstract


  • Human tracking is an important vision task in video surveillance and perceptual human-computer interfaces. This paper presents a novel algorithm for region-based human tracking using color and depth features. We propose an adaptive autoregressive logarithmic search (ARLS) to estimate the target position, and use depth information to further reduce the false alarm rate. The new ARLS algorithm is evaluated on a color and depth (RGBD) video dataset acquired with the Kinect sensor. The dataset contains various real-world scenarios with illumination and speed variations, and partial occlusion. The experimental results show that the ARLS algorithm is able to handle difficult tracking scenarios; it achieves a tracking accuracy of 91.26% on the test dataset. The proposed algorithm is compared with two tracking algorithms, namely the particle filtering and a modified logarithmic search algorithm. © 2012 IEEE.

Publication Date


  • 2012

Citation


  • P. Li, A. Bouzerdoum & S. Phung, "Adaptive autoregressive logarithmic search for 3D human tracking," in AVSS 2012: 9th IEEE International Conference on Advanced Video and Signal-Based Surveillance, 2012, pp. 343-348.

Scopus Eid


  • 2-s2.0-84868248020

Ro Metadata Url


  • http://ro.uow.edu.au/infopapers/2319

Has Global Citation Frequency


Start Page


  • 343

End Page


  • 348

Place Of Publication


  • USA