Skip to main content
placeholder image

Facile synthesis of graphene-molybdenum dioxide and its lithium storage properties

Journal Article


Download full-text (Open Access)

Abstract


  • Graphene–molybdenum dioxide composites in several ratios have been prepared through a facile synthesis method. Depending on the ratio, the as synthesized composites have either 2-dimensional graphene sheets with MoO2 particles anchored to them or a clustered agglomerate morphology. The composites have been characterised using Raman spectroscopy, X-ray diffraction, and electron diffraction to confirm the monoclinic MoO2 phase that is present. Lithium storage properties of the as-synthesised samples were tested in a coin-type half cell assembly to determine the relationship between the ratio and the electrochemical performance. The sample with highest amount of MoO2 (78 wt%) displayed the most promising lithium storage properties, with stable cycling performance at 0.2 A g−1 that shows negligible capacity loss over 50 cycles, retaining a capacity of 640 mA h g−1. The rate capabilities were also tested, and show a capacity of 380 mA h g−1 at 2.0 A g−1, which is comparable to the theoretical capacity of graphite and previously reported work on similar materials.

Publication Date


  • 2012

Citation


  • Seng, K. Hau., Du, G. Dong., Li, L., Chen, Z., Liu, H. K. & Guo, Z. Ping. (2012). Facile synthesis of graphene-molybdenum dioxide and its lithium storage properties. Journal of Materials Chemistry, 22 (31), 16072-16077.

Scopus Eid


  • 2-s2.0-84863953572

Ro Full-text Url


  • http://ro.uow.edu.au/cgi/viewcontent.cgi?article=8151&context=engpapers

Ro Metadata Url


  • http://ro.uow.edu.au/engpapers/5219

Has Global Citation Frequency


Number Of Pages


  • 5

Start Page


  • 16072

End Page


  • 16077

Volume


  • 22

Issue


  • 31

Place Of Publication


  • United Kingdom

Abstract


  • Graphene–molybdenum dioxide composites in several ratios have been prepared through a facile synthesis method. Depending on the ratio, the as synthesized composites have either 2-dimensional graphene sheets with MoO2 particles anchored to them or a clustered agglomerate morphology. The composites have been characterised using Raman spectroscopy, X-ray diffraction, and electron diffraction to confirm the monoclinic MoO2 phase that is present. Lithium storage properties of the as-synthesised samples were tested in a coin-type half cell assembly to determine the relationship between the ratio and the electrochemical performance. The sample with highest amount of MoO2 (78 wt%) displayed the most promising lithium storage properties, with stable cycling performance at 0.2 A g−1 that shows negligible capacity loss over 50 cycles, retaining a capacity of 640 mA h g−1. The rate capabilities were also tested, and show a capacity of 380 mA h g−1 at 2.0 A g−1, which is comparable to the theoretical capacity of graphite and previously reported work on similar materials.

Publication Date


  • 2012

Citation


  • Seng, K. Hau., Du, G. Dong., Li, L., Chen, Z., Liu, H. K. & Guo, Z. Ping. (2012). Facile synthesis of graphene-molybdenum dioxide and its lithium storage properties. Journal of Materials Chemistry, 22 (31), 16072-16077.

Scopus Eid


  • 2-s2.0-84863953572

Ro Full-text Url


  • http://ro.uow.edu.au/cgi/viewcontent.cgi?article=8151&context=engpapers

Ro Metadata Url


  • http://ro.uow.edu.au/engpapers/5219

Has Global Citation Frequency


Number Of Pages


  • 5

Start Page


  • 16072

End Page


  • 16077

Volume


  • 22

Issue


  • 31

Place Of Publication


  • United Kingdom