Skip to main content

On the energy consumption of pure and slotted aloha based RFID anti-collision protocols

Journal Article


Abstract


  • A recent development in wireless sensor networks (WSNs) research is to equip sensor nodes with an RFID reader so that they can be used to track animate or in-animate RFID tagged objects. A key problem in such networks, however, is the energy efficiency of current RFID anti-collision protocols. Specifically, the energy cost incurred by a RFID reader to read and monitor n tags.This paper, therefore, aims to identify the most energy efficient variant among 12 Pure and Slotted Aloha based RFID anti-collision protocols. We present an analytical methodology that evaluates the energy consumed in the following phases: (i) success, (ii) collision, and (iii) idle listening. We first calculate the delay of each phase and then use it to formulate the energy consumption, battery lifetime, and battery wastage of all variants. We found that the Pure Aloha with fast mode consumes the lowest energy and is suitable for tag identification. However, none of the protocols promises energy efficient monitoring of identified tags. In other words, the reader is required to re-read all tags every time to sense their presence; a process that consumes a significant amount of energy.

Publication Date


  • 2009

Citation


  • D. Klair, K. Chin & R. Raad, "On the energy consumption of pure and slotted aloha based RFID anti-collision protocols," Computer Communications, vol. 32, (5) pp. 961-973, 2009.

Scopus Eid


  • 2-s2.0-61349131319

Ro Metadata Url


  • http://ro.uow.edu.au/infopapers/3151

Has Global Citation Frequency


Number Of Pages


  • 12

Start Page


  • 961

End Page


  • 973

Volume


  • 32

Issue


  • 5

Abstract


  • A recent development in wireless sensor networks (WSNs) research is to equip sensor nodes with an RFID reader so that they can be used to track animate or in-animate RFID tagged objects. A key problem in such networks, however, is the energy efficiency of current RFID anti-collision protocols. Specifically, the energy cost incurred by a RFID reader to read and monitor n tags.This paper, therefore, aims to identify the most energy efficient variant among 12 Pure and Slotted Aloha based RFID anti-collision protocols. We present an analytical methodology that evaluates the energy consumed in the following phases: (i) success, (ii) collision, and (iii) idle listening. We first calculate the delay of each phase and then use it to formulate the energy consumption, battery lifetime, and battery wastage of all variants. We found that the Pure Aloha with fast mode consumes the lowest energy and is suitable for tag identification. However, none of the protocols promises energy efficient monitoring of identified tags. In other words, the reader is required to re-read all tags every time to sense their presence; a process that consumes a significant amount of energy.

Publication Date


  • 2009

Citation


  • D. Klair, K. Chin & R. Raad, "On the energy consumption of pure and slotted aloha based RFID anti-collision protocols," Computer Communications, vol. 32, (5) pp. 961-973, 2009.

Scopus Eid


  • 2-s2.0-61349131319

Ro Metadata Url


  • http://ro.uow.edu.au/infopapers/3151

Has Global Citation Frequency


Number Of Pages


  • 12

Start Page


  • 961

End Page


  • 973

Volume


  • 32

Issue


  • 5