Abstract
-
Conjugated polymers have promising applications as actuators in biomimetic robotics and bio/micromanipulation.
For these applications, it is highly desirable to have predictive models available for feasibility study and design
optimization. In this paper a geometrically-scalable model is presented for trilayer conjugated polymer actuators
based on the diffusive-elastic-metal model. The proposed model characterizes actuation behaviors in terms of
intrinsic material parameters and actuator dimensions. Experiments are conducted on polypyrrole actuators of
different dimensions to validate the developed scaling laws for the quasi-static force and displacement output,
the electrical admittance, and the dynamic displacement response.