Skip to main content
placeholder image

Mechanics of nanotubes oscillating in carbon nanotube bundles

Journal Article


Abstract


  • Carbon nanotubes are nanostructures that promise much in the area of constructing nanoscale devices due to their enhanced mechanical, electrical and thermal properties. In this paper, we examine a gigahertz oscillator that comprises a carbon nanotube oscillating in a uniform concentric ring or bundle of carbon nanotubes. A number of existing results for nanotube oscillators are employed to analyse the design considerations of optimizing such a device, and significant new results are also derived. These include a new analytical expression for the interaction per unit length of two parallel carbon nanotubes involving the Appell hypergeometric functions. This expression is employed to precisely determine the relationship between the bundle radius and the radii of the nanotubes forming the bundle. Furthermore, several pragmatic approximations are also given, including the relationships between the bundle radius and the constituent nanotube radius and the oscillating tube radius and the bundle nanotube radius. We also present a simplified analysis of the force and energy for a nanotube oscillating in a nanotube bundle leading to an expression for the oscillating frequency and the maximum oscillating frequency, including constraints on configurations under which this maximum is possible.

UOW Authors


Publication Date


  • 2008

Citation


  • Cox, B. J., Thamwattana, N. & Hill, J. (2008). Mechanics of nanotubes oscillating in carbon nanotube bundles. Proceedings of the Royal Society of London: Mathematical, Physical and Engineering Sciences, 464 (2091), 691-710.

Scopus Eid


  • 2-s2.0-42949124367

Ro Metadata Url


  • http://ro.uow.edu.au/infopapers/2721

Has Global Citation Frequency


Number Of Pages


  • 19

Start Page


  • 691

End Page


  • 710

Volume


  • 464

Issue


  • 2091

Abstract


  • Carbon nanotubes are nanostructures that promise much in the area of constructing nanoscale devices due to their enhanced mechanical, electrical and thermal properties. In this paper, we examine a gigahertz oscillator that comprises a carbon nanotube oscillating in a uniform concentric ring or bundle of carbon nanotubes. A number of existing results for nanotube oscillators are employed to analyse the design considerations of optimizing such a device, and significant new results are also derived. These include a new analytical expression for the interaction per unit length of two parallel carbon nanotubes involving the Appell hypergeometric functions. This expression is employed to precisely determine the relationship between the bundle radius and the radii of the nanotubes forming the bundle. Furthermore, several pragmatic approximations are also given, including the relationships between the bundle radius and the constituent nanotube radius and the oscillating tube radius and the bundle nanotube radius. We also present a simplified analysis of the force and energy for a nanotube oscillating in a nanotube bundle leading to an expression for the oscillating frequency and the maximum oscillating frequency, including constraints on configurations under which this maximum is possible.

UOW Authors


Publication Date


  • 2008

Citation


  • Cox, B. J., Thamwattana, N. & Hill, J. (2008). Mechanics of nanotubes oscillating in carbon nanotube bundles. Proceedings of the Royal Society of London: Mathematical, Physical and Engineering Sciences, 464 (2091), 691-710.

Scopus Eid


  • 2-s2.0-42949124367

Ro Metadata Url


  • http://ro.uow.edu.au/infopapers/2721

Has Global Citation Frequency


Number Of Pages


  • 19

Start Page


  • 691

End Page


  • 710

Volume


  • 464

Issue


  • 2091