Abstract
-
(Received 12 April 2007; accepted 4 May 2007; published online 29 May 2007)
The ferroelectric behavior in terms of electrical polarization and fatigue and dielectric properties at elevated temperature of the ferroelectric Bi3.25Sm0.75V0.02T2.98O12 thin film fabricated by the pulsed laser deposition method were studied. Its switchable polarization increased at elevated temperature, and the coercive field decreased at the same time due to the strong domain depinning process at higher temperature. This film shows almost a polarization-fatigue-free character at room temperature, but the aggregation and diffusion of the thermally activated long-range oxygen vacancies caused strong domain pinning, and thus a poor fatigue resistance was observed at elevated temperature. ÃÂÃÂÃÂé2007 American Institute of Physics