Skip to main content
placeholder image

Power Loss and Thermal Impedance Modeling of Multilevel Power Converter with Discontinuous Modulation

Journal Article


Download full-text (Open Access)

Abstract


  • The hard switching operation of the insulated gate bipolar transistor (IGBT)-based multilevel converters (MLCs) in the transformer less direct integration of renewable power plants produces a considerable amount of switching and conduction power loss. This eventually causes higher junction temperature and lower thermal stability. The third harmonic sixty-degree bus-clamped pulse width modulation (BCPWM) technique demonstrates reduced switching losses and better harmonic spectra. In this paper, an analytical model for calculating the average and the rms currents for the hard switching operation of IGBTs and antiparallel diodes (APDs) is proposed. Furthermore, to calculate the device turn-on and turn-off losses, a discrete form of equation is presented to evaluate the transition times of switching more precisely. The numerical power loss values of IGBTs and APDs found from the derived analytical equations for MLC are compared with the simulation and experimental results. The numerical results agree well with the simulated and the experimental outcomes, which validate the proposed analytical loss model. Moreover, an advanced three dimensional thermal impedance model with chip-wise interdependent multilayer thermal coupling effect is also considered in this paper to realize the critical thermal loading condition of the switching devices.

UOW Authors


  •   Islam, Md Mazharul. (external author)
  •   Rahman, Ashib (external author)
  •   Islam, Md Rabiul

Publication Date


  • 2020

Citation


  • M. Mazharul. Islam, M. Rahman & M. Islam, "Power Loss and Thermal Impedance Modeling of Multilevel Power Converter with Discontinuous Modulation," IEEE Transactions on Energy Conversion, vol. Online First, p. 1, 2020.

Scopus Eid


  • 2-s2.0-85101671519

Ro Full-text Url


  • https://ro.uow.edu.au/cgi/viewcontent.cgi?article=5304&context=eispapers1

Ro Metadata Url


  • http://ro.uow.edu.au/eispapers1/4276

Start Page


  • 1

Volume


  • Online First

Place Of Publication


  • United States

Abstract


  • The hard switching operation of the insulated gate bipolar transistor (IGBT)-based multilevel converters (MLCs) in the transformer less direct integration of renewable power plants produces a considerable amount of switching and conduction power loss. This eventually causes higher junction temperature and lower thermal stability. The third harmonic sixty-degree bus-clamped pulse width modulation (BCPWM) technique demonstrates reduced switching losses and better harmonic spectra. In this paper, an analytical model for calculating the average and the rms currents for the hard switching operation of IGBTs and antiparallel diodes (APDs) is proposed. Furthermore, to calculate the device turn-on and turn-off losses, a discrete form of equation is presented to evaluate the transition times of switching more precisely. The numerical power loss values of IGBTs and APDs found from the derived analytical equations for MLC are compared with the simulation and experimental results. The numerical results agree well with the simulated and the experimental outcomes, which validate the proposed analytical loss model. Moreover, an advanced three dimensional thermal impedance model with chip-wise interdependent multilayer thermal coupling effect is also considered in this paper to realize the critical thermal loading condition of the switching devices.

UOW Authors


  •   Islam, Md Mazharul. (external author)
  •   Rahman, Ashib (external author)
  •   Islam, Md Rabiul

Publication Date


  • 2020

Citation


  • M. Mazharul. Islam, M. Rahman & M. Islam, "Power Loss and Thermal Impedance Modeling of Multilevel Power Converter with Discontinuous Modulation," IEEE Transactions on Energy Conversion, vol. Online First, p. 1, 2020.

Scopus Eid


  • 2-s2.0-85101671519

Ro Full-text Url


  • https://ro.uow.edu.au/cgi/viewcontent.cgi?article=5304&context=eispapers1

Ro Metadata Url


  • http://ro.uow.edu.au/eispapers1/4276

Start Page


  • 1

Volume


  • Online First

Place Of Publication


  • United States