Skip to main content
placeholder image

On the Combined Effect of Silicon Oxide Thickness and Boron Implantation under the Gate in MOSFET Dosimeters

Journal Article


Abstract


  • © 1963-2012 IEEE. The metal-oxide-semiconductor field-effect transistor (MOSFET) can be used as a dosimeter. It is robust, lightweight, cost-effective, is able to operate in real time with and without external bias, and also has a very small sensitive volume. Therefore, it is particularly suitable for in vivo dosimetry in modern radiation therapy and also as a patient dosimeter in diagnostic radiology. MOSFET sensitivity to ionizing radiation can be tailored to a specific application or a dose range. This is done by fabricating the radiation-sensitive volume of different thicknesses, or alternatively, by adjusting the external bias applied on the gate during irradiation. However, increased sensitivity comes at the cost of reduction in the MOSFET's lifespan. This article investigated a way to maximize sensitivity while minimizing the reduction in lifespan. The MOSFETs we considered had a sensitive volume of thickness 0.68 or 1.0 μm and different boron implantations under the gate. We then irradiated the MOSFETs by applying different positive biases on the gate. We assessed linearity of the dose-response relationship and sensitivity in photon beams that were produced using a megavoltage medical linear accelerator (linac) and an orthovoltage X-ray tube.

Publication Date


  • 2020

Citation


  • Biasi, G., Su, F., Al-sudani, T., Corde Tehei, S., Petasecca, M., Lerch, M., Perevertaylo, V., Jackson, M. & Rozenfeld, A. (2020). On the Combined Effect of Silicon Oxide Thickness and Boron Implantation under the Gate in MOSFET Dosimeters. IEEE Transactions on Nuclear Science, 67 (3), 534-540.

Scopus Eid


  • 2-s2.0-85082087652

Number Of Pages


  • 6

Start Page


  • 534

End Page


  • 540

Volume


  • 67

Issue


  • 3

Place Of Publication


  • United States

Abstract


  • © 1963-2012 IEEE. The metal-oxide-semiconductor field-effect transistor (MOSFET) can be used as a dosimeter. It is robust, lightweight, cost-effective, is able to operate in real time with and without external bias, and also has a very small sensitive volume. Therefore, it is particularly suitable for in vivo dosimetry in modern radiation therapy and also as a patient dosimeter in diagnostic radiology. MOSFET sensitivity to ionizing radiation can be tailored to a specific application or a dose range. This is done by fabricating the radiation-sensitive volume of different thicknesses, or alternatively, by adjusting the external bias applied on the gate during irradiation. However, increased sensitivity comes at the cost of reduction in the MOSFET's lifespan. This article investigated a way to maximize sensitivity while minimizing the reduction in lifespan. The MOSFETs we considered had a sensitive volume of thickness 0.68 or 1.0 μm and different boron implantations under the gate. We then irradiated the MOSFETs by applying different positive biases on the gate. We assessed linearity of the dose-response relationship and sensitivity in photon beams that were produced using a megavoltage medical linear accelerator (linac) and an orthovoltage X-ray tube.

Publication Date


  • 2020

Citation


  • Biasi, G., Su, F., Al-sudani, T., Corde Tehei, S., Petasecca, M., Lerch, M., Perevertaylo, V., Jackson, M. & Rozenfeld, A. (2020). On the Combined Effect of Silicon Oxide Thickness and Boron Implantation under the Gate in MOSFET Dosimeters. IEEE Transactions on Nuclear Science, 67 (3), 534-540.

Scopus Eid


  • 2-s2.0-85082087652

Number Of Pages


  • 6

Start Page


  • 534

End Page


  • 540

Volume


  • 67

Issue


  • 3

Place Of Publication


  • United States