Skip to main content
placeholder image

Efficient Server-Aided Secure Two-Party Computation in Heterogeneous Mobile Cloud Computing

Journal Article


Abstract


  • IEEE With the ubiquity of mobile devices and rapid development of cloud computing, mobile cloud computing (MCC) has been considered as an essential computation setting to support complicated, scalable and flexible mobile applications by overcoming the physical limitations of mobile devices with the aid of cloud. In the MCC setting, since many mobile applications (e.g., map apps) interacting with cloud server and application server need to perform computation with the private data of users, it is important to realize secure computation for MCC. In this work, we propose an efficient server-aided secure two-party computation (2PC) protocol for MCC. This is the first work that considers collusion between a malicious garbled circuit evaluator and a semi-honest server while ensuring privacy and correctness. Also, it can guarantee fairness when collusion does not exist. The security analysis shows that our protocol can securely compute any function f(x, y) against different types of adversaries in the malicious model. Also, the experimental performance analysis shows that this work outperforms the previous works for at least 10 times with the same security level.

Authors


  •   Wu, Yulin (external author)
  •   Wang, Xuan (external author)
  •   Susilo, Willy
  •   Yang, Guomin
  •   Jiang, Zoe (external author)
  •   Chen, Qian (external author)
  •   Xu, Peng (external author)

Publication Date


  • 2020

Citation


  • Wu, Y., Wang, X., Susilo, W., Yang, G., Jiang, Z., Chen, Q. & Xu, P. (2020). Efficient Server-Aided Secure Two-Party Computation in Heterogeneous Mobile Cloud Computing. IEEE Transactions on Dependable and Secure Computing,

Scopus Eid


  • 2-s2.0-85078008945

Ro Metadata Url


  • http://ro.uow.edu.au/eispapers1/3688

Place Of Publication


  • United States

Abstract


  • IEEE With the ubiquity of mobile devices and rapid development of cloud computing, mobile cloud computing (MCC) has been considered as an essential computation setting to support complicated, scalable and flexible mobile applications by overcoming the physical limitations of mobile devices with the aid of cloud. In the MCC setting, since many mobile applications (e.g., map apps) interacting with cloud server and application server need to perform computation with the private data of users, it is important to realize secure computation for MCC. In this work, we propose an efficient server-aided secure two-party computation (2PC) protocol for MCC. This is the first work that considers collusion between a malicious garbled circuit evaluator and a semi-honest server while ensuring privacy and correctness. Also, it can guarantee fairness when collusion does not exist. The security analysis shows that our protocol can securely compute any function f(x, y) against different types of adversaries in the malicious model. Also, the experimental performance analysis shows that this work outperforms the previous works for at least 10 times with the same security level.

Authors


  •   Wu, Yulin (external author)
  •   Wang, Xuan (external author)
  •   Susilo, Willy
  •   Yang, Guomin
  •   Jiang, Zoe (external author)
  •   Chen, Qian (external author)
  •   Xu, Peng (external author)

Publication Date


  • 2020

Citation


  • Wu, Y., Wang, X., Susilo, W., Yang, G., Jiang, Z., Chen, Q. & Xu, P. (2020). Efficient Server-Aided Secure Two-Party Computation in Heterogeneous Mobile Cloud Computing. IEEE Transactions on Dependable and Secure Computing,

Scopus Eid


  • 2-s2.0-85078008945

Ro Metadata Url


  • http://ro.uow.edu.au/eispapers1/3688

Place Of Publication


  • United States