Skip to main content
placeholder image

Blue carbon potential of coastal wetland restoration varies with inundation and rainfall

Journal Article


Abstract


  • There is a growing interest in how the management of ‘blue carbon’ sequestered by coastal wetlands can influence global greenhouse gas (GHG) budgets. A promising intervention is through restoring tidal exchange to impounded coastal wetlands for reduced methane (CH 4 ) emissions. We monitored an impounded wetland’s GHG flux (CO 2 and CH 4 ) prior to and following tidal reinstatement. We found that biogeochemical responses varied across an elevation gradient. The low elevation zone experienced a greater increase in water level and an associated greater marine transition in the sediment microbial community (16 S rRNA) than the high elevation zone. The low elevation zone’s GHG emissions had a reduced sustained global warming potential of 264 g m −2 yr −1 CO 2 -e over 100 years, and it increased to 351 g m −2 yr −1 with the removal of extreme rain events. However, emission benefits were achieved through a reduction in CO 2 emissions, not CH 4 emissions. Overall, the wetland shifted from a prior CH 4 sink (−0.07 to −1.74 g C m −2 yr −1 ) to a variable sink or source depending on the elevation site and rainfall. This highlights the need to consider a wetland’s initial GHG emissions, elevation and future rainfall trends when assessing the efficacy of tidal reinstatement for GHG emission control.

Authors


  •   Negandhi, Karita (external author)
  •   Edwards, Grant (external author)
  •   Kelleway, Jeff
  •   Howard, Dean (external author)
  •   Safari, David (external author)
  •   Saintilan, Neil (external author)

Publication Date


  • 2019

Citation


  • Negandhi, K., Edwards, G., Kelleway, J. J., Howard, D., Safari, D. & Saintilan, N. (2019). Blue carbon potential of coastal wetland restoration varies with inundation and rainfall. Scientific Reports, 9 (1), 4368-1-4368-9.

Scopus Eid


  • 2-s2.0-85062837817

Start Page


  • 4368-1

End Page


  • 4368-9

Volume


  • 9

Issue


  • 1

Place Of Publication


  • United Kingdom

Abstract


  • There is a growing interest in how the management of ‘blue carbon’ sequestered by coastal wetlands can influence global greenhouse gas (GHG) budgets. A promising intervention is through restoring tidal exchange to impounded coastal wetlands for reduced methane (CH 4 ) emissions. We monitored an impounded wetland’s GHG flux (CO 2 and CH 4 ) prior to and following tidal reinstatement. We found that biogeochemical responses varied across an elevation gradient. The low elevation zone experienced a greater increase in water level and an associated greater marine transition in the sediment microbial community (16 S rRNA) than the high elevation zone. The low elevation zone’s GHG emissions had a reduced sustained global warming potential of 264 g m −2 yr −1 CO 2 -e over 100 years, and it increased to 351 g m −2 yr −1 with the removal of extreme rain events. However, emission benefits were achieved through a reduction in CO 2 emissions, not CH 4 emissions. Overall, the wetland shifted from a prior CH 4 sink (−0.07 to −1.74 g C m −2 yr −1 ) to a variable sink or source depending on the elevation site and rainfall. This highlights the need to consider a wetland’s initial GHG emissions, elevation and future rainfall trends when assessing the efficacy of tidal reinstatement for GHG emission control.

Authors


  •   Negandhi, Karita (external author)
  •   Edwards, Grant (external author)
  •   Kelleway, Jeff
  •   Howard, Dean (external author)
  •   Safari, David (external author)
  •   Saintilan, Neil (external author)

Publication Date


  • 2019

Citation


  • Negandhi, K., Edwards, G., Kelleway, J. J., Howard, D., Safari, D. & Saintilan, N. (2019). Blue carbon potential of coastal wetland restoration varies with inundation and rainfall. Scientific Reports, 9 (1), 4368-1-4368-9.

Scopus Eid


  • 2-s2.0-85062837817

Start Page


  • 4368-1

End Page


  • 4368-9

Volume


  • 9

Issue


  • 1

Place Of Publication


  • United Kingdom