Skip to main content
placeholder image

Recent advances in chemical adsorption and catalytic conversion materials for Li–S batteries

Journal Article


Abstract


  • Owing to their low cost, high energy densities, and superior performance compared with that of Li-ion batteries, Li–S batteries have been recognized as very promising next-generation batteries. However, the commercialization of Li–S batteries has been hindered by the insulation of sulfur, significant volume expansion, shuttling of dissolved lithium polysulfides (LiPSs), and more importantly, sluggish conversion of polysulfide intermediates. To overcome these problems, a state-of-the-art strategy is to use sulfur host materials that feature chemical adsorption and electrocatalytic capabilities for LiPS species. In this review, we comprehensively illustrate the latest progress on the rational design and controllable fabrication of materials with chemical adsorbing and binding capabilities for LiPSs and electrocatalytic activities that allow them to accelerate the conversion of LiPSs for Li–S batteries. Moreover, the current essential challenges encountered when designing these materials are summarized, and possible solutions are proposed. We hope that this review could provide some strategies and theoretical guidance for developing novel chemical anchoring and electrocatalytic materials for high-performance Li–S batteries.

Authors


  •   Hong, Xiaodong (external author)
  •   Wang, Rui (external author)
  •   Liu, Yue (external author)
  •   Fu, Jiawei (external author)
  •   Liang, Ji
  •   Dou, Shi Xue

Publication Date


  • 2020

Citation


  • Hong, X., Wang, R., Liu, Y., Fu, J., Liang, J. & Dou, S. (2020). Recent advances in chemical adsorption and catalytic conversion materials for Li–S batteries. Journal of Energy Chemistry, 42 144-168.

Scopus Eid


  • 2-s2.0-85069590097

Ro Metadata Url


  • http://ro.uow.edu.au/aiimpapers/3735

Has Global Citation Frequency


Number Of Pages


  • 24

Start Page


  • 144

End Page


  • 168

Volume


  • 42

Place Of Publication


  • United States

Abstract


  • Owing to their low cost, high energy densities, and superior performance compared with that of Li-ion batteries, Li–S batteries have been recognized as very promising next-generation batteries. However, the commercialization of Li–S batteries has been hindered by the insulation of sulfur, significant volume expansion, shuttling of dissolved lithium polysulfides (LiPSs), and more importantly, sluggish conversion of polysulfide intermediates. To overcome these problems, a state-of-the-art strategy is to use sulfur host materials that feature chemical adsorption and electrocatalytic capabilities for LiPS species. In this review, we comprehensively illustrate the latest progress on the rational design and controllable fabrication of materials with chemical adsorbing and binding capabilities for LiPSs and electrocatalytic activities that allow them to accelerate the conversion of LiPSs for Li–S batteries. Moreover, the current essential challenges encountered when designing these materials are summarized, and possible solutions are proposed. We hope that this review could provide some strategies and theoretical guidance for developing novel chemical anchoring and electrocatalytic materials for high-performance Li–S batteries.

Authors


  •   Hong, Xiaodong (external author)
  •   Wang, Rui (external author)
  •   Liu, Yue (external author)
  •   Fu, Jiawei (external author)
  •   Liang, Ji
  •   Dou, Shi Xue

Publication Date


  • 2020

Citation


  • Hong, X., Wang, R., Liu, Y., Fu, J., Liang, J. & Dou, S. (2020). Recent advances in chemical adsorption and catalytic conversion materials for Li–S batteries. Journal of Energy Chemistry, 42 144-168.

Scopus Eid


  • 2-s2.0-85069590097

Ro Metadata Url


  • http://ro.uow.edu.au/aiimpapers/3735

Has Global Citation Frequency


Number Of Pages


  • 24

Start Page


  • 144

End Page


  • 168

Volume


  • 42

Place Of Publication


  • United States