Skip to main content
placeholder image

A Yolk–Shell Structured Silicon Anode with Superior Conductivity and High Tap Density for Full Lithium-Ion Batteries

Journal Article


Abstract


  • The poor cycling stability resulting from the large volume expansion caused by lithiation is a critical issue for Si-based anodes. Herein, we report for the first time of a new yolk–shell structured high tap density composite made of a carbon-coated rigid SiO2 outer shell to confine multiple Si NPs (yolks) and carbon nanotubes (CNTs) with embedded Fe2O3 nanoparticles (NPs). The high tap density achieved and superior conductivity can be attributed to the efficiently utilised inner void containing multiple Si yolks, Fe2O3 NPs, and CNTs Li+ storage materials, and the bridged spaces between the inner Si yolks and outer shell through a conductive CNTs “highway”. Half cells can achieve a high area capacity of 3.6 mAh cm−2 and 95 % reversible capacity retention after 450 cycles. The full cell constructed using a Li-rich Li2V2O5 cathode can achieve a high reversible capacity of 260 mAh g−1 after 300 cycles.

UOW Authors


  •   Zhang, Lei (external author)
  •   Wang, Chengrui (external author)
  •   Dou, Yuhai (external author)
  •   Cheng, Ningyan (external author)
  •   Cui, Dandan (external author)
  •   Du, Yi
  •   Liu, Porun (external author)
  •   Al-Mamun, Mohammad (external author)
  •   Zhang, Shanqing (external author)
  •   Zhao, Huijun (external author)

Publication Date


  • 2019

Citation


  • Zhang, L., Wang, C., Dou, Y., Cheng, N., Cui, D., Du, Y., Liu, P., Al-Mamun, M., Zhang, S. & Zhao, H. (2019). A Yolk–Shell Structured Silicon Anode with Superior Conductivity and High Tap Density for Full Lithium-Ion Batteries. Angewandte Chemie - International Edition, 131 (26), 8916-8920.

Scopus Eid


  • 2-s2.0-85066071501

Ro Metadata Url


  • http://ro.uow.edu.au/aiimpapers/3669

Number Of Pages


  • 4

Start Page


  • 8916

End Page


  • 8920

Volume


  • 131

Issue


  • 26

Place Of Publication


  • Germany

Abstract


  • The poor cycling stability resulting from the large volume expansion caused by lithiation is a critical issue for Si-based anodes. Herein, we report for the first time of a new yolk–shell structured high tap density composite made of a carbon-coated rigid SiO2 outer shell to confine multiple Si NPs (yolks) and carbon nanotubes (CNTs) with embedded Fe2O3 nanoparticles (NPs). The high tap density achieved and superior conductivity can be attributed to the efficiently utilised inner void containing multiple Si yolks, Fe2O3 NPs, and CNTs Li+ storage materials, and the bridged spaces between the inner Si yolks and outer shell through a conductive CNTs “highway”. Half cells can achieve a high area capacity of 3.6 mAh cm−2 and 95 % reversible capacity retention after 450 cycles. The full cell constructed using a Li-rich Li2V2O5 cathode can achieve a high reversible capacity of 260 mAh g−1 after 300 cycles.

UOW Authors


  •   Zhang, Lei (external author)
  •   Wang, Chengrui (external author)
  •   Dou, Yuhai (external author)
  •   Cheng, Ningyan (external author)
  •   Cui, Dandan (external author)
  •   Du, Yi
  •   Liu, Porun (external author)
  •   Al-Mamun, Mohammad (external author)
  •   Zhang, Shanqing (external author)
  •   Zhao, Huijun (external author)

Publication Date


  • 2019

Citation


  • Zhang, L., Wang, C., Dou, Y., Cheng, N., Cui, D., Du, Y., Liu, P., Al-Mamun, M., Zhang, S. & Zhao, H. (2019). A Yolk–Shell Structured Silicon Anode with Superior Conductivity and High Tap Density for Full Lithium-Ion Batteries. Angewandte Chemie - International Edition, 131 (26), 8916-8920.

Scopus Eid


  • 2-s2.0-85066071501

Ro Metadata Url


  • http://ro.uow.edu.au/aiimpapers/3669

Number Of Pages


  • 4

Start Page


  • 8916

End Page


  • 8920

Volume


  • 131

Issue


  • 26

Place Of Publication


  • Germany