Skip to main content
placeholder image

Assessing data quality and the variability of source data verification auditing methods in clinical research settings

Journal Article


Download full-text (Open Access)

Abstract


  • Introduction: Data audits within clinical settings are extensively used as a major strategy to identify errors, monitor study operations and ensure high-quality data. However, clinical trial guidelines are non-specific in regards to recommended frequency, timing and nature of data audits. The absence of a well-defined data quality definition and method to measure error undermines the reliability of data quality assessment. This review aimed to assess the variability of source data verification (SDV) auditing methods to monitor data quality in a clinical research setting.

    Material and methods: The scientific databases MEDLINE, Scopus and Science Direct were searched for English language publications, with no date limits applied. Studies were considered if they included data from a clinical trial or clinical research setting and measured and/or reported data quality using a SDV auditing method.

    Results: In total 15 publications were included. The nature and extent of SDV audit methods in the articles varied widely, depending upon the complexity of the source document, type of study, variables measured (primary or secondary), data audit proportion (3–100%) and collection frequency (6–24 months). Methods for coding, classifying and calculating error were also inconsistent. Transcription errors and inexperienced personnel were the main source of reported error. Repeated SDV audits using the same dataset demonstrated ∼ 40% improvement in data accuracy and completeness over time. No description was given in regards to what determines poor data quality in clinical trials.

    Conclusions: A wide range of SDV auditing methods are reported in the published literature though no uniform SDV auditing method could be determined for “best practice” in clinical trials. Published audit methodology articles are warranted for the development of a standardised SDV auditing method to monitor data quality in clinical research settings.

Authors


  •   Houston, Lauren (external author)
  •   Probst, Yasmine
  •   Martin, Allison (external author)

Publication Date


  • 2018

Citation


  • Houston, L., Probst, Y. & Martin, A. (2018). Assessing data quality and the variability of source data verification auditing methods in clinical research settings. Journal Of Biomedical Informatics, 83 25-32.

Scopus Eid


  • 2-s2.0-85047646860

Ro Full-text Url


  • https://ro.uow.edu.au/cgi/viewcontent.cgi?article=2440&context=ihmri

Ro Metadata Url


  • http://ro.uow.edu.au/ihmri/1412

Number Of Pages


  • 7

Start Page


  • 25

End Page


  • 32

Volume


  • 83

Place Of Publication


  • United States

Abstract


  • Introduction: Data audits within clinical settings are extensively used as a major strategy to identify errors, monitor study operations and ensure high-quality data. However, clinical trial guidelines are non-specific in regards to recommended frequency, timing and nature of data audits. The absence of a well-defined data quality definition and method to measure error undermines the reliability of data quality assessment. This review aimed to assess the variability of source data verification (SDV) auditing methods to monitor data quality in a clinical research setting.

    Material and methods: The scientific databases MEDLINE, Scopus and Science Direct were searched for English language publications, with no date limits applied. Studies were considered if they included data from a clinical trial or clinical research setting and measured and/or reported data quality using a SDV auditing method.

    Results: In total 15 publications were included. The nature and extent of SDV audit methods in the articles varied widely, depending upon the complexity of the source document, type of study, variables measured (primary or secondary), data audit proportion (3–100%) and collection frequency (6–24 months). Methods for coding, classifying and calculating error were also inconsistent. Transcription errors and inexperienced personnel were the main source of reported error. Repeated SDV audits using the same dataset demonstrated ∼ 40% improvement in data accuracy and completeness over time. No description was given in regards to what determines poor data quality in clinical trials.

    Conclusions: A wide range of SDV auditing methods are reported in the published literature though no uniform SDV auditing method could be determined for “best practice” in clinical trials. Published audit methodology articles are warranted for the development of a standardised SDV auditing method to monitor data quality in clinical research settings.

Authors


  •   Houston, Lauren (external author)
  •   Probst, Yasmine
  •   Martin, Allison (external author)

Publication Date


  • 2018

Citation


  • Houston, L., Probst, Y. & Martin, A. (2018). Assessing data quality and the variability of source data verification auditing methods in clinical research settings. Journal Of Biomedical Informatics, 83 25-32.

Scopus Eid


  • 2-s2.0-85047646860

Ro Full-text Url


  • https://ro.uow.edu.au/cgi/viewcontent.cgi?article=2440&context=ihmri

Ro Metadata Url


  • http://ro.uow.edu.au/ihmri/1412

Number Of Pages


  • 7

Start Page


  • 25

End Page


  • 32

Volume


  • 83

Place Of Publication


  • United States