Skip to main content
placeholder image

A structural view of bacterial DNA replication

Journal Article


Download full-text (Open Access)

Abstract


  • DNA replication mechanisms are conserved across all organisms. The proteins required to initiate, coordinate, and complete the replication process are best characterized in model organisms such as Escherichia coli. These include nucleotide triphosphate-driven nanomachines such as the DNA-unwinding helicase DnaB and the clamp loader complex that loads DNA-clamps onto primer–template junctions. DNA-clamps are required for the processivity of the DNA polymerase III core, a heterotrimer of α, ε, and θ, required for leading- and lagging-strand synthesis. DnaB binds the DnaG primase that synthesizes RNA primers on both strands. Representative structures are available for most classes of DNA replication proteins, although there are gaps in our understanding of their interactions and the structural transitions that occur in nanomachines such as the helicase, clamp loader, and replicase core as they function. Reviewed here is the structural biology of these bacterial DNA replication proteins and prospects for future research.

Publication Date


  • 2019

Citation


  • Oakley, A. J. (2019). A structural view of bacterial DNA replication. Protein Science, 28 (6), 990-1004.

Scopus Eid


  • 2-s2.0-85064552293

Ro Full-text Url


  • https://ro.uow.edu.au/cgi/viewcontent.cgi?article=1703&context=smhpapers1

Ro Metadata Url


  • http://ro.uow.edu.au/smhpapers1/689

Number Of Pages


  • 14

Start Page


  • 990

End Page


  • 1004

Volume


  • 28

Issue


  • 6

Place Of Publication


  • United States

Abstract


  • DNA replication mechanisms are conserved across all organisms. The proteins required to initiate, coordinate, and complete the replication process are best characterized in model organisms such as Escherichia coli. These include nucleotide triphosphate-driven nanomachines such as the DNA-unwinding helicase DnaB and the clamp loader complex that loads DNA-clamps onto primer–template junctions. DNA-clamps are required for the processivity of the DNA polymerase III core, a heterotrimer of α, ε, and θ, required for leading- and lagging-strand synthesis. DnaB binds the DnaG primase that synthesizes RNA primers on both strands. Representative structures are available for most classes of DNA replication proteins, although there are gaps in our understanding of their interactions and the structural transitions that occur in nanomachines such as the helicase, clamp loader, and replicase core as they function. Reviewed here is the structural biology of these bacterial DNA replication proteins and prospects for future research.

Publication Date


  • 2019

Citation


  • Oakley, A. J. (2019). A structural view of bacterial DNA replication. Protein Science, 28 (6), 990-1004.

Scopus Eid


  • 2-s2.0-85064552293

Ro Full-text Url


  • https://ro.uow.edu.au/cgi/viewcontent.cgi?article=1703&context=smhpapers1

Ro Metadata Url


  • http://ro.uow.edu.au/smhpapers1/689

Number Of Pages


  • 14

Start Page


  • 990

End Page


  • 1004

Volume


  • 28

Issue


  • 6

Place Of Publication


  • United States