Skip to main content
placeholder image

Experimental and Self-Consistent Modeling Study of De-twinning in a Twinning-Induced Plasticity Steel

Journal Article


Abstract


  • The effect of compression–tension loading on the microstructure evolution in a fully annealed Fe–24Mn–3Al–2Si–1Ni–0.06C twinning-induced plasticity steel has been investigated. Electron back-scattering diffraction was used to track a region of interest at true strains of 0 (initial), − 0.09 (after forward compression loading), and 0.04 (after reverse tension loading). All deformation twins detected after forward compression loading were found to de-twin upon subsequent reverse tension loading, likely due to the reverse glide of partial dislocations bounding the twins. The reverse loading behavior, including the twinning and de-twinning processes, was successfully simulated using a recently modified dislocation-based hardening model embedded in the visco-plastic self-consistent polycrystal framework, taking into account the dislocation accumulation/annihilation, as well as the twin barrier and back-stress effects.

Publication Date


  • 2019

Citation


  • Saleh, A. A., Wen, W., Pereloma, E. V., McCormack, S. J., Tome, C. N. & Gazder, A. A. (2019). Experimental and Self-Consistent Modeling Study of De-twinning in a Twinning-Induced Plasticity Steel. JOM Journal of the Minerals, Metals and Materials Society, 71 (4), 1396-1403.

Scopus Eid


  • 2-s2.0-85063254097

Number Of Pages


  • 7

Start Page


  • 1396

End Page


  • 1403

Volume


  • 71

Issue


  • 4

Place Of Publication


  • United States

Abstract


  • The effect of compression–tension loading on the microstructure evolution in a fully annealed Fe–24Mn–3Al–2Si–1Ni–0.06C twinning-induced plasticity steel has been investigated. Electron back-scattering diffraction was used to track a region of interest at true strains of 0 (initial), − 0.09 (after forward compression loading), and 0.04 (after reverse tension loading). All deformation twins detected after forward compression loading were found to de-twin upon subsequent reverse tension loading, likely due to the reverse glide of partial dislocations bounding the twins. The reverse loading behavior, including the twinning and de-twinning processes, was successfully simulated using a recently modified dislocation-based hardening model embedded in the visco-plastic self-consistent polycrystal framework, taking into account the dislocation accumulation/annihilation, as well as the twin barrier and back-stress effects.

Publication Date


  • 2019

Citation


  • Saleh, A. A., Wen, W., Pereloma, E. V., McCormack, S. J., Tome, C. N. & Gazder, A. A. (2019). Experimental and Self-Consistent Modeling Study of De-twinning in a Twinning-Induced Plasticity Steel. JOM Journal of the Minerals, Metals and Materials Society, 71 (4), 1396-1403.

Scopus Eid


  • 2-s2.0-85063254097

Number Of Pages


  • 7

Start Page


  • 1396

End Page


  • 1403

Volume


  • 71

Issue


  • 4

Place Of Publication


  • United States