Skip to main content
placeholder image

Interactive effects of changing stratospheric ozone and climate on tropospheric composition and air quality, and the consequences for human and ecosystem health

Journal Article


Abstract


  • The composition of the air we breathe is determined by emissions, weather, and photochemical transformations induced by solar UV radiation. Photochemical reactions of many emitted chemical compounds can generate important (secondary) pollutants including ground-level ozone (O 3 ) and some particulate matter, known to be detrimental to human health and ecosystems. Poor air quality is the major environmental cause of premature deaths globally, and even a small decrease in air quality can translate into a large increase in the number of deaths. In many regions of the globe, changes in emissions of pollutants have caused significant changes in air quality. Short-term variability in the weather as well as long-term climatic trends can affect ground-level pollution through several mechanisms. These include large-scale changes in the transport of O 3 from the stratosphere to the troposphere, winds, clouds, and patterns of precipitation. Long-term trends in UV radiation, particularly related to the depletion and recovery of stratospheric ozone, are also expected to result in changes in air quality as well as the self-cleaning capacity of the global atmosphere. The increased use of substitutes for ozone-depleting substances, in response to the Montreal Protocol, does not currently pose a significant risk to the environment. This includes both the direct emissions of substitutes during use and their atmospheric degradation products (e.g. trifluoroacetic acid, TFA).

UOW Authors


  •   Wilson, Stephen
  •   Madronich, Sasha (external author)
  •   Longstreth, Janice (external author)
  •   Solomon, Keith R. (external author)

Publication Date


  • 2019

Citation


  • Wilson, S. R., Madronich, S., Longstreth, J. D. & Solomon, K. R. (2019). Interactive effects of changing stratospheric ozone and climate on tropospheric composition and air quality, and the consequences for human and ecosystem health. Photochemical and Photobiological Sciences, 18 (3), 775-803.

Scopus Eid


  • 2-s2.0-85062831622

Ro Metadata Url


  • http://ro.uow.edu.au/smhpapers1/638

Number Of Pages


  • 28

Start Page


  • 775

End Page


  • 803

Volume


  • 18

Issue


  • 3

Place Of Publication


  • United Kingdom

Abstract


  • The composition of the air we breathe is determined by emissions, weather, and photochemical transformations induced by solar UV radiation. Photochemical reactions of many emitted chemical compounds can generate important (secondary) pollutants including ground-level ozone (O 3 ) and some particulate matter, known to be detrimental to human health and ecosystems. Poor air quality is the major environmental cause of premature deaths globally, and even a small decrease in air quality can translate into a large increase in the number of deaths. In many regions of the globe, changes in emissions of pollutants have caused significant changes in air quality. Short-term variability in the weather as well as long-term climatic trends can affect ground-level pollution through several mechanisms. These include large-scale changes in the transport of O 3 from the stratosphere to the troposphere, winds, clouds, and patterns of precipitation. Long-term trends in UV radiation, particularly related to the depletion and recovery of stratospheric ozone, are also expected to result in changes in air quality as well as the self-cleaning capacity of the global atmosphere. The increased use of substitutes for ozone-depleting substances, in response to the Montreal Protocol, does not currently pose a significant risk to the environment. This includes both the direct emissions of substitutes during use and their atmospheric degradation products (e.g. trifluoroacetic acid, TFA).

UOW Authors


  •   Wilson, Stephen
  •   Madronich, Sasha (external author)
  •   Longstreth, Janice (external author)
  •   Solomon, Keith R. (external author)

Publication Date


  • 2019

Citation


  • Wilson, S. R., Madronich, S., Longstreth, J. D. & Solomon, K. R. (2019). Interactive effects of changing stratospheric ozone and climate on tropospheric composition and air quality, and the consequences for human and ecosystem health. Photochemical and Photobiological Sciences, 18 (3), 775-803.

Scopus Eid


  • 2-s2.0-85062831622

Ro Metadata Url


  • http://ro.uow.edu.au/smhpapers1/638

Number Of Pages


  • 28

Start Page


  • 775

End Page


  • 803

Volume


  • 18

Issue


  • 3

Place Of Publication


  • United Kingdom