Skip to main content
placeholder image

The K-theory of twisted multipullback quantum odd spheres and complex projective spaces

Journal Article


Abstract


  • We find multipullback quantum odd-dimensional spheres equipped with natural U.1/-actions that yield the multipullback quantum complex projective spaces constructed from Toeplitz cubes as noncommutative quotients. We prove that the noncommutative line bundles associated to multipullback quantum odd spheres are pairwise stably non-isomorphic, and that the K-groups of multipullback quantum complex projective spaces and odd spheres coincide with their classical counterparts.We show that theseK-groups remain the same for more general twisted versions of our quantum odd spheres and complex projective spaces.

Authors


  •   Hajac, Piotr M. (external author)
  •   Nest, Ryszard (external author)
  •   Pask, David A.
  •   Sims, Aidan D.
  •   Zielinski, Bartosz (external author)

Publication Date


  • 2018

Citation


  • Hajac, P. M., Nest, R., Pask, D., Sims, A. & Zielinski, B. (2018). The K-theory of twisted multipullback quantum odd spheres and complex projective spaces. Journal of Noncommutative Geometry, 12 (3), 823-863.

Scopus Eid


  • 2-s2.0-85056347057

Number Of Pages


  • 40

Start Page


  • 823

End Page


  • 863

Volume


  • 12

Issue


  • 3

Place Of Publication


  • Switzerland

Abstract


  • We find multipullback quantum odd-dimensional spheres equipped with natural U.1/-actions that yield the multipullback quantum complex projective spaces constructed from Toeplitz cubes as noncommutative quotients. We prove that the noncommutative line bundles associated to multipullback quantum odd spheres are pairwise stably non-isomorphic, and that the K-groups of multipullback quantum complex projective spaces and odd spheres coincide with their classical counterparts.We show that theseK-groups remain the same for more general twisted versions of our quantum odd spheres and complex projective spaces.

Authors


  •   Hajac, Piotr M. (external author)
  •   Nest, Ryszard (external author)
  •   Pask, David A.
  •   Sims, Aidan D.
  •   Zielinski, Bartosz (external author)

Publication Date


  • 2018

Citation


  • Hajac, P. M., Nest, R., Pask, D., Sims, A. & Zielinski, B. (2018). The K-theory of twisted multipullback quantum odd spheres and complex projective spaces. Journal of Noncommutative Geometry, 12 (3), 823-863.

Scopus Eid


  • 2-s2.0-85056347057

Number Of Pages


  • 40

Start Page


  • 823

End Page


  • 863

Volume


  • 12

Issue


  • 3

Place Of Publication


  • Switzerland