Skip to main content
placeholder image

On the Comparison of Two Room Compensation / Dereverberation Methods Employing Active Acoustic Boundary Absorption

Conference Paper


Abstract


  • In this paper, we compare the performance of two active dereverberation techniques using a planar array of microphones and loudspeakers. The two techniques are based on a solution to the Kirchhoff-Helmholtz Integral Equation (KHIE). We adapt a Wave Field Synthesis (WFS) based method to the application of real-time 3D dereverberation by using a low-latency pre-filter design. The use of First-Order Differential (FOD) models is also proposed as an alternative method to the use of monopoles with WFS and which does not assume knowledge of the room geometry or primary sources. The two methods are compared by observing the suppression of reflections off a single active wall over the volume of a room in the time and (temporal) frequency domain. The FOD method provides better suppression of reflections than the WFS based method but at the expense of using higher order models. The equivalent absorption coefficients are comparable to passive fibre panel absorbers.

Authors


  •   Donley, Jacob (external author)
  •   Ritz, Christian H.
  •   Kleijn, Bastiaan (Willem) (external author)

Publication Date


  • 2018

Citation


  • J. Donley, C. Ritz & W. Bastiaan. Kleijn, "On the Comparison of Two Room Compensation / Dereverberation Methods Employing Active Acoustic Boundary Absorption," in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP): Proceedings, 2018, pp. 221-225.

Scopus Eid


  • 2-s2.0-85054251167

Start Page


  • 221

End Page


  • 225

Place Of Publication


  • United States

Abstract


  • In this paper, we compare the performance of two active dereverberation techniques using a planar array of microphones and loudspeakers. The two techniques are based on a solution to the Kirchhoff-Helmholtz Integral Equation (KHIE). We adapt a Wave Field Synthesis (WFS) based method to the application of real-time 3D dereverberation by using a low-latency pre-filter design. The use of First-Order Differential (FOD) models is also proposed as an alternative method to the use of monopoles with WFS and which does not assume knowledge of the room geometry or primary sources. The two methods are compared by observing the suppression of reflections off a single active wall over the volume of a room in the time and (temporal) frequency domain. The FOD method provides better suppression of reflections than the WFS based method but at the expense of using higher order models. The equivalent absorption coefficients are comparable to passive fibre panel absorbers.

Authors


  •   Donley, Jacob (external author)
  •   Ritz, Christian H.
  •   Kleijn, Bastiaan (Willem) (external author)

Publication Date


  • 2018

Citation


  • J. Donley, C. Ritz & W. Bastiaan. Kleijn, "On the Comparison of Two Room Compensation / Dereverberation Methods Employing Active Acoustic Boundary Absorption," in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP): Proceedings, 2018, pp. 221-225.

Scopus Eid


  • 2-s2.0-85054251167

Start Page


  • 221

End Page


  • 225

Place Of Publication


  • United States